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Chapter 1

Introduction

In this report, the interaction of electromagnetic fields with objects composed of

chiral media is analyzed using eigenfunction and method of moments techniques.

The term chiral media was first used by Jaggard, Mickelson, and Papas in 1979

[1], who defined chiral media as consisting of macroscopic chiral objects randomly

embedded in a dielectric. The word chiral describes something that is handed, i.e., an

object whose mirror image can not be produced solely by rotating and translating

the original object. An example of chiral media is shown in Figure 1.1(a). For

comparison, an artificial dielectric is shown in Figure 1.1(b).

1.1 What is Chiral Media

Chiral media are a class of artificial dielectrics that exhibit optical activity, a property

of many biological and chemical substances which occurs naturally almost exclusively

at optical frequencies [2]. Optical activity is a reciprocal property characterized by

differing wave numbers for right and left circularly polarized waves. One effect is to

cause a linearly or elliptically polarized wave to rotate its axis of polarization as it

propagates through the optically active medium; this is known as optical rotation,

circular birefringence, or circular double refraction [3]. The other effect, circular

dichroism, is the difference in the attenuation rates for the right and left circularly

polarized waves, thereby causing a linearly polarized wave to degenerate into an

I 1
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(a) (b) 3

Figure 1.1: Examples of (a) a chiral medium composed of a three-dimensional array
of randomly orientated helices and (b) an artificial dielectric composed of a three-
dimensional array of spheres.

elliptically polarized wave. The Faraday effect is similar to optical activity, except

the latter is reciprocal and can occur in isotropic as well as anisotropic media, while 3
the former is nonreciprocal and occurs only in anisotropic media.

To put chiral media in perspective with respect to other media, consider the con-

stitutive relationships for the major subdivisions of media shown in Figure 1.2. The

constitutive relationships for bianisotropic media, the most general media, are shown 3
at the top of the figure, where the explicit dependence of the constitutive parameters

on space, time, etc., has not been shown for clarity [4, 5]. Research on bianisotropic I
media can be applied to chiral media since chiral media is a scalar version of bian-

isotropic media [6-[18]. The first set of equations shown for bianisotropic media I
can be written as P

H (M Q cB

where cD and H have the same units (A/m), E and cB have the same units (V/M),

and in combination they each form six-dimensional vectors (tensors of rank one). I

2I
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I BIANISOTROPIC

cD= P. E +L. cB D= ~.E +Z. H

I or
H= M- E +Q- cB B=. E +ft H

IANISOTROPIC BIISOTROPIC
D= -E. E D=,EE+ H

1B=p. H B=(E+,IH

iISOTROPIC CHIRAL
D=EE =EjB

B = IH H-B -j , E

Figure 1.2: Constitutive relationships for the major subdivisions of media.
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Of particular importance is that all of the constitutive parameters have the same

units and together form a six-dimensional tensor of rank two. That the constitutive

parameters P and Q individually are three-dimensional tensors of rank two is well

documented in the literature on bianisotropic media; however, that the constitutive

parameters L and M individually are pseudotensors of rank two is often neglected.

This characteristic is important because pseudotensors are not invariant with respect 1

to improper coordinate transformations. A coordinate transformation is improper

if the determinant of its Jacobian is negative; one example is the transformation I
to create the image of an object [6, sec. 2.6, 6.2], [19, pg. 813]. This translates

into a minus sign as was shown in 1971 by Kong when developing image theory for

bianisotropic media [11]. A similar result is developed in Section 2.5 for chiral media

using the volume equivalence theorem of Section 2.4. The same result can also be

obtained by using the fact that 6, is a pseudoscalar (pseudotensor of rank zero).

1.2 Overview

The remainder of this chapter presents historical background on the constitutive

relationships for chiral and optically active media, as well as an outline of the work I
on chiral media. Chapter 2 presents background electromagnetic theory for chiral

media. The geometries studied in this report are shown in Figure 1.3. Figure 1.3(a)

shows the cylindrical geometry for which Bohren [20] developed an eigenfunction so-

lution for scattering by a normally incident plane wave. This solution was used as the

base for developing the solution for scattering by the multilayer circular chiral cylin-

der presented in Chapter 3 and shown in Figure 1.3(b). The eigenfunction solution

by Bohren was also used as the reference solution when developing the pulse-basis

point-matching method of moments solution for scattering by an inhomogeneous

object composed of chiral media in free-space presented in Chapter 4 and shown in

Figure 1.3(c). Chapter 4 also presents a pulse-basis point-matching method of mo-

ments solution for scattering by an inhomogeneous object composed of chiral media

4U I
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in the presence of a perfectly coiidu,.iag half-piane as slio,,Nii in Figure 1.3(d). , Ihis

Isolution could be generalized for scattering in a half-space and verified using the

image theory for chiral media developed in Chapter 2 and shown in Figure 1.3(e).

I Chapter 5 presents a spectral-domain Galerkin method of moments solution for a

imicrostrip transmission line on a chiral substrate as shown in Figure 1.3(f).

1.3 History of Constitutive Reh.iionships for Op-
I tical Activity

This section presents a brief history of the constitutive relationships for optically

active media. In the fields of biology, chemistry, and physics, optical activity has been

Istudied since early in the nineteenth century [2]. However, it was not until nearly a

century later that researchers began to develop theories for natural optical activity

Iin terms of electromagnetic wave theory. The early theories were based on classical

mechanics [21, pg. 616-635]; later, quantum mechanical theories were developed

[21, pg. 703-723]. In these theories, optical activity is the result of a second-order

iterm in the dispersion formula. This causes a time-harmonic electric field to create

not only an electric dipole but also a linked magnetic dipole. The reverse is true for

Ia time-harmonic magnetic field. In 1937, Condon [3, 22] summarized the quantum

mechanical theories for natural isotropic optical activity and presented constitutive

relationships of the form

V = Ef+fW g O (1.2a)I~ t
B = JLoW+f E+ 19f (1.2b)I at

where g is the rotatory parameter and f is small with only a second order effect on

the phase velocity and no effect on optical rotation.

I
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(a) Eigenfunction (b) Multilayer
I
I
I

I
(c) Method of Moments (d) Half-plane

~I

I

//////////////////7//, 1111/1117"717111,17-1/-/.I

(e) Image Theory (f) Microstrip

Figure 1.3: Overview of geometries studied in this report.
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In 1959, Moiiitt and Moscowitz extended this work with constitutive relationships

I of the form

D(w,t) = E(w)E(w,t) + f(w)H(w,t)- g(w) -H(w, t) (1.3a)

B(,t) = (w) H(w,t) + f(w) E(w,t) + g(w) -E(w,t) (1.3b)at
where the time-dependence was not dropped [23, pg. 652]. They showed that the

I real and imaginary components of the constitutive parameters E(w), /(w), f(w), and

g(w) are related by the Kramers-Kronig relations [5, 6]

I 2() -£IJS( 2 ds (1.4a)

"(,,O) ir - w('-s ds (1.4b)

where ((w) = ('(w) - j("(w) and C = e, /I, f, g. Moffitt and Moscowitz showed that

the optical rotation is proportional to g' and the circular dichroism is proportional to

g"; therefore, these two measured quantities are related by Kramers-Kronig relations.

I This is true because f is small and affects only the average phase velocity with a

second order effect. This can be seen by examining the wave numbers for right (kr)

i and left (kL) circularly polarized waves propagating in an optically active media

described by Equation (1.3):

kR = W p-E- + W-- (1.5a)

I =W E f 2  W g (1.5b)FL E 3 2 c

i The factor kR - k1.contains only g, and it is this factor that is responsible for optical

rotation and circular dichroism. Additional information on optical activity and how

the constitutive equations are derived can be found in the previously mentioned

references and [24]-[36].

I 7
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1.4 Microwave Models for Optical Activity

The optical activity of helical molecules led researchers to consider large-scale mod-

els at microwave frequencies. Some of the earliest experimental work on this topic

was done in 1920 and 1922 by Lindman [37, 38], who measured the rotation of

microwaves propagating through randomly oriented copper helices. In 1956, Win- I
kler [39] repeated Lindman's work and obtained slightly different results. Similar

measurements were done in 1957 by Tinoco and Freeman [40] for oriented arrays of

helices. They showed that the array of helices rotated the polarization of incident

plane waves over a wide frequency range, The strongest optical rotation and cir-

cular dichroism corresponded to the case of A = 2L/k, where k = 1,2,3,... and

L is the length of the wire in the helix. However, these researchers were interested

in how their results matched models for optical activity, not in the electromagnetic

properties of arrays of wire helices.

1.5 Electromagnetic Scattering and Optical Ac- -
tivity

One of the first researchers to study scattering by optically active bodies using

electromagnetic wave theory was Bohren; a previous researcher used the approximate

Mie scattering technique [41]. Bohren used constitutive relationships of the form

[42, 43]

D = E E+ EVXE (1.6a) I
B = tH+/31VXH (1.6b)

where a and 03 are the parameters which account for the optical activity. The pa-

rameters a and j3 are equal in the absence of an externally applied magnetic field. I
His work on scattering by electromagnetic waves was limited to eigenfunction solu-

tions for homogeneous spheres [42], spherical shells [44], and cylinders [20]. He also

8
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present:ri an approximatc solu:ion for arbit. ariiy shaped inho ig tus b,.dies us-

ing the Rayleigh-Debye approximation, which is valid only for small bodies with low

density [45]. However, his interest in optically active bodies was based on modeling

the measurement of biological particles such as viruses [46].

1.6 History of Chiral Media

IThe history of chiral media starts in 1979 with the introductory paper by Jaggard,

Mickelson, and Papas [1]. They examined the approximate scattering by a single

perfectly conducting short wire helix and concluded that a randomly oriented col-

lection of such objects would behave macroscopically as a medium with constitutive

Irelationships of the form

D = eE-jCB (i.7a)
1

H = -B-j tE (1.7b)

where ,. is the chirality admittance and the ei" time convention is used. The next

paper on chiral media was not published until 1982 and considered the transition

radiation generated by a charged particle passing through a plate composed of chiral

media [47]. Later research has extended this work to Cerenkov radiation in infinite

chiral media [48, 49].

Chiral Interfaces and Slabs

Silverman, in 1985, examined scattering by an achiral/chiral interface, where the

chiral medium was described by either the Condon (Equation (1.2) with f = 0) or

the Born (Equation (1.6) with 0 = 0) forms of the constitutive relationships [50].

Additional research has been done on scattering by achiral/chiral interfaces [51]-

[57], chiral/chiral interfaces [58], the interface of mirror-conjugated chiral media [59],

and periodic achiral/chiral interfaces [60]. Researchers have also studied scattering

by chiral slabs [54, 61] and chiral slabs backed by perfect conductors [62]-[64].

9
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Related research has studied wave propagation along a chiral slab [65]. Creation of

an anisotropic chiral slab using slabs of uniaxial media has also been studied [66]. I

Scattering by Chiral Bodies

Research on scattering by objects composed of chiral media has expanded since the

early work by Bohren [20], [42]-[45]. In 1985, Lakhtakia, V. K. Varadan, and V. V.

Varadan presented results for scattering by spheroidal objects using the T-matrix

method [67]. Later work by Uslenghi extended the spherical problem to a single

chiral layer on a sphere with an impedance surface [68]. Related work has been done

on the eigenmodes of a perfectly conducting sphere filled with chiral media [69].

Research by the author, presented in Chapter 3, extended the homogeneous circular

cylinder studied by Bohren [20] to a multilayer circular chiral cylinder with the center

cylinder described by an impedance surface [70]. Additional work by the author,

presented in Chapter 4, extended scattering to objects of arbitrary cross-section

using the volume equivalence theorem [71, 72]. Numerical results were presented 3
for two-dimensional objects in free space [71, 72] and in the presence of a perfectly

conducting half-plane [73]. An alternative approach requiring fewer unknowns has I
been developed by Rojas [74].

Basic Research

The majority of the early research concentrated on the electromagnetic properties I
of infinite chiral media [75]-[87] and the Dyadic Green's functions for one, two,

and three dimensions [881-[901. There is the possibility that this research may be

applied to modeling vegetation layers for remote sensing [88]. This research has been 3
applied to antennas radiating in infinite chiral media [91, 92] and in the presence of a

chiral sphere [93]. Related research has been done on a point dipole radiating inside

a chiral sphere [94]. Surface integral equations have been developed for scattering

by perfect electrically conducting bodies in an infinite chiral medium [95].

10 I
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Construction of Chiral Media

Research into the construction of microwave chiral media has been limited to the-

I oretical studies of scattering by beaded helices [96, 971 and measurements of chiral

media constructed with wire helices embedded in a dielectric [61, 98, 99]. Related

I research has studied the mixing of small chiral bodies in an infinite chiral media

[100, 101].

Applied Research

In 1988, an excellent introductory article on chiral media was published by Engheta

and Jaggard [102]. Since then, research has expanded into parallel plate waveguides

[103], circular waveguides [104]-[109], periodic structures [110], lenses [111], and

microstrip antennas on chiral substrates [112, 113].

I
I
I
I
I
I
I
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Chapter 2 II
Theory

This chapter presents electromagnetics theory for the analysis of the interaction of 1

electromagnetic fields with objects composed of chiral media. Section 2.1 presents

the constitutive relationships and basic notation for chiral media. Section 2.2

presents a technique for transforming the coupled wave equations of chiral media

into a set of uncoupled wave equations in terms of right and left circularly polarized

waves. Section 2.3 presents circular vector potentials which have properties similar

to those of the usual magnetic and electric vector potentials, except that they result

in circular rather than linearly polarized fields. This property makes them useful

for field expansions in chiral media. Section 2.4 presents the volume equivalence

theorem for chiral media, which is used in Chapter 4 for a method of moments cal- 3
culation of scattering by arbitrarily shaped bodies. The volume equivalence theorem

is also used in Section 2.5 to develop image theory for a chiral body over a perfectly 1

conducting electric or magnetic ground plane.

2.1 Constitutive Relationships

This section presents the constitutive relationships and notation used in this report.

All fields and currents are considered to be time harmonic with the eiwt time depen-

dence suppressed. The constitutive relationships for a chiral or an isotropic optically

I
12I
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active medium [6, sec. 8.3 can be written as

D = E-jB (2.1a)

SH = B -j ,E (2.1b)

where #I is the permeability, E is tle permittivity, and the pseudoscalar & is the

chirality admittance of the medium. The medium is lossy if I, c, or , are complex. If

I = 0, then Equation (2.1) reduces to the constitutive relationships for an isotropic

achiral medium. To simplify the following developments, Equation (2.1) can be

written as

D =EE - jp&H (2.2a)

B = IH + jy ,:E (2.2b)

where the effective permittivity, E, of the chiral medium is defined as

c = f + ,L2. (2.3)

2.2 Chiral Wave Equation

This section presents the wave equations for chiral media and a technique for trans-

formii.g the coupled E and H wave equations into uncoupled wave equations in

terms of right and left circularly po'- ,zed waves, which can be solved by the classi-

cal approach.

Regardless of the medium, the fields (E, B, D, H), produced by the impressed

electric and magnetic currents (Y, M'), are related by Maxwell's equations [114],

-V x E = jwB + M' (2.4a)

V xH = jwD+J' (2.4b)

V .D = p (2.4c)

V.B = 0 (2.4d)

13
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where p is the electric charge density given by p = j V J/w.

Now consider a chiral medium with constitutive parametc-rb (IL, c, ,). The fields i
(E, H) produced by (J', M') in the chiral medium are obtained by substituting

Equation (2.2) into Maxwell's equations resulting in

- V X E = jwtH - w,,E + M' (2.5a)

V x H = jwc(E + wp ,H + J (2.5b)

V.E = p/E (2.5c)

V H = -j,.p/E. (2.5d)

Equation (2.5) can be written in matrix form as

V ( ) [K] () + (2.6a)
H H J

V p (2.6L)

where I

[K] [wkL - 1t]I (2.7)

Using Equation (2.6), the source-free wave equation is

v2()+ [K]2( = o. (2.8)H Hl
Following the work of Bohren [42, 43], although for constitutive relationships differ-

ent than those used here, the coupling caused by [K] in the wave equation can be

removed by diagonalizing [K] such that

[K] = [A][ kj? 0 [A]-. (2.9) 3
0 -kl J

Using linear algebra techniques, [A] is found to be i1 1
[A)= J/77,- j/77,(210

14
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with the chiral wave impedance given by

77c (2.11)

and the chiral wave numbers given by

* " } w~jkit~ (2.12)

Substituting Equation (2.9) into Equation (2.8) and multiplying through from

the left by [A]- 1 results in

[A]- 'V 2 ( E ) + [ [A]( ) =0. (2.13)
H 0 -k H

To simplify Equation (2.13) define

*[A () (E) (2.14)

where Ell and El. can be shown to be the electric fields of right and left circularly po-

larized waves with wave numbers kR and kL, respectively [43]. Then, the uncoupled

source-free wave equation in chiral media is( + )= 0 (2.15)
EL k2EL

Multiplying Equation (2.14) through from the left by [A] gives

E ) I 1/Ic] ( )ER (2.16)H j/7, -jl,7q EL

Substituting Equation (2.16) into Equation (2.6) results in the uncoupled Maxwell's

3 equations for chiral media

V X( ) = - . 1 (7 ) (2.17a)
(EL --kLEL 2 -Lr 1

V = . (2.17b)

15
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From Equation (2.16), the magnetic fields are given by

HR j( ER(2.18)

The total electric or magnetic field is the sum of the right and left circularly polarized

electric or magnetic fields I

E = ER + EL (2.19a)

H = HR + HL. (2.19b) U
2.3 Circular Vector Potentials I

This section develops the right and left circular vector potentials, which simplify the

field expansions for chiral media. These potentials are analogous to the magnetic

(A) and electric (F) vector potentials. In an homogeneous source-free achiral region

the magnetic vector potential A is obtained by solving the wave equation

V 2A + k2 A = 0 (2.20) U
where V x A = B, V . A = -jwu;u4, and 4, is the electric scalar potential [115].

However, in an homogeneous source-free chiral region, the corresponding wave equa-

tion is 3
V 2A + 2wpgV x A + k2A = 0 (2.21)

using the same definitions as used for Equation (2.20) and the constitutive rela- I
tionships for chiral media. Solutions for equations of this form are known [78, 88];

however, an alternate solution is presented below based on the same method that

was used in the previous section to uncouple the wave equation for chiral media.

Following the techniques used for vector wave functions [114, sec. 7.1] the right

(R) and left (L) circular vector potentials are defined as

R = 60(kn) (2.22a)

L = aC(kL) (2.22b) I
16
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where i is an arbitrary constant unit vector and (k) is a solution of the scalar wave

equation

V 2V)(k) + k 27(k) = 0. (2.23)

From these vector potentials the right and left circularly polarized electric fields are

formed using

ER = VX R 1 V x R (2.24a)

EL = VX (L-h1V xL) . (2.24b)

The right (or left) circular vector potential component Ry (or Ly) produces a right

(or left) circular to y field RCI. (or LCI.), just as the magnetic vector potential

component A. produces a transverse magnetic to y field TM-.

2.4 Chiral Volume Equivalence Theorem

This section develops the volume equivalence theorem for chiral media [114, sec. 1.61,

[115, sec. 3-11], [116], [117], [118, p. 327]. The volume equivalence theorem allows

a chiral scatterer to be replaced by free space and equivalent electric and magnetic

volume polarization currents (J, M). From Maxwell's equations the incident or

free space fields, denoted (E, H'), of the impressed electric and magnetic currents

(J', M') are related by

-V x E' = jwioH' + M' (2.25a)

V x H' = jwEuE + J' (2.25b)

where (IL,, Eo) are the constitutive parameters of free space.

3 Now consider an inhomogeneous chiral medium with constitutive parameters

(I,, C). The total fields, denoted (E, H), produced by (J', Mi) in the inhomoge-

I neous chiral medium are given by Equation (2.5) and can be written as

-V x E = jwIsoH + jw(iL - I 0 )H - wgiE + M' (2.26a)

V x H = jwEoE + jw(,c - fo)E + wjH + J' (2.26b)

I 17
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where jwpoH and jwEoE have been added and subtracted from the right hand sides

of Equations (2.26a) and (2.26b), respectively, to simplify the next step.

By definition the scattered fields, denoted (E 5 , HS), are the difference between

the total fields and the incident fields, I

Es = E-E' (2.27a) 3
H 5 = H - H'. (2.27b)

Subtracting Equation (2.25a) from (2.26a), Equation (2.25b) from (2.26b), and mak-

ing use of Equation (2.27) yields 3
-V X ]F = jwtiH s + [jw(It - t 0 )H - wpLE]. (2.28a)

V X HS = jwEuE s + [jw(Ec - E,)E + wlzi,:H] (2.28b)

By comparing Equation (2.28a) to (2.25a) and Equation (2.28b) to (2.25b), it I
can be seen that the scattered fields appear to be produced by the equivalent electric

and magnetic volume polarization currents

3J w~E - EO)E + wj.CH (2.29a)

M = jw(A - p0)H - wpLcE (2.29b)

radiating in free space. Note that (J, M) are nonzero only where the parameters of

the inhomogeneous chiral medium differ from those of free space. 3
2.5 Image Theory for Chiral Media 3
This section develops image theory for a chiral body over an infinite perfectly con- I
ducting electric or magnetic ground plane [1191. Image theory defines an equivalent

problem for currents and material bodies over an infinite ground plane, in which the 3
ground plane is removed and replaced by the image of the currents and material

bodies. 3
18 3
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A chirai medium was originally defined as conszstzng of macroscopic chiral objects

randomly embedded in a dielectric [1]. From this definition, the image of a material

body consisting of chiral media does not have the same material parameters as the

original body, since the image body consists of macroscopic chiral objects of the

oppo-,f e !andcdnes6.

The chiral volume equivalence theorem, developed in Section 2.4, is used to

replace the chiral body by free space and equivalent electric and magnetic currents.

Next, conventional image theory is used to replace the ground plane by conventional

I image currents. Finally, the chiral volume equivalence theorem is used to replace

the image currents by the image of the original chiral body.

I Figure 2.1(a) shows the original problem consisting of the impressed currents

(J',M') producing the total fields (E,H) in the presence of a chiral body with

I material parameters (t, , ) over an infinite perfectly conducting electric ground

plane at y = 0. For simplicity, the ambient medium is considered to be free space

I with material parameters (L(L, cu). In Figure 2.1(b), the chiral volume equivalence

theorem is used to replace the chiral body by free space and the equivalent electric

I and magnetic volume polarization currents given by Equation (2.29).

In Figure 2.1(d), conventional image theory for currents is used to replace the

ground plane by (J",M"), the image of the impressed currents, and (J',M'), the

image of the equivalent currents, which are related to the total fields (E,H) in the

upper half space by

I J1,1 .(x,-y,z) = Tjw(E, - Eo)En,I,.(x,y,z) TWIi cHH,,v(2,y,z) (2.30a)

Mi ,(x,-y,z) = ±jw(i - IO)HH(,,(x,y,z) T wAL CEl.V(x,y,z) (2.30b)

where the subscripts H and V refer to the horizontal (ic, i) and vertical (i) vector

components, respectively. The image fields below y = 0 are given by

I E 1,-.(x,-y,z) = :-EH,.(x,y,z) (2.31a)

H .(,-y,z ) =+H,(,y,z) (2.31b)

I19
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Figure 2.2. Image theory for a chiral body over a perfect magnetic conductor.

Combining Equation (2.30) and Equation (2.31), (J',M') are related to (E',H') in

the lower half space by

J'(o,-y,z) = jw(6 - Et)E'(x,-y,z)- wpLcH'(x,-y,z) (2.32a)

M'(x,-y,z) = jw(i - #o)H'(x,-y,z) + wls ,E'(x,-y,z). (2.32b)

Finally, comparing Equation (2.29) with Equation (2.32) shows that the image of

the chiral body has material parameters of (, , -G), as shown in Figure 2 .1(c).

Similarly, as illustrated in Figure 2.2, the image of a chiral body over a perfectly

conducting magnetic ground plane also has material parameters of (,U, E,

This section has developed image theory for a chiral body over an infinite per-

fectly conducting electric or magnetic ground plane. In both cases it was shown that

the image of a chiral body has the same material parameters as the original body,

except that the chirality admittance of the image is the negative of the original. In

essence the mirror image of a chiral object is that object, such as a helix, with the

opposite handedness.

21
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Alternatively, the same results can be obtained using tensor analysis and the fact

that ,- is a pseudoscalar (pseudotensor of rank zero). Pseudoscalars, unlike scalars

(tensors of rank zero), are not invariant with respect to coordinate transformations.

The image of the chiral body is obtained by spatial inversion, an improper coordinate

transformation, which introduces the sign change [6, sec. 2.6, 6.2, 8.3], [19, pg. 813].

I
I
I

I
I
I
I
I
I

I
I
I
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Chapter 3

Scattering by a Multilayer
Cylinder

This chapter presents an efficient recursive eigenfunction solution for scattering by

a multilayer circular chiral cylinder, with or without a surface impedance center

cylinder, for transverse magnetic (TM) and transverse electric (TE) normal incidence

plane waves, as shown in Figure 3.1. The special cases of zero or infinite surface

impedance correspond to a perfect electric or magnetic conducting center cylinder,

respectively.

The solution for scattering by an M layer chiral cylinder requires finding an

eigenfunction expansion in each layer, then matching continuity of tangential electric

and magnetic fields at the M interfaces. The M = 1 or homogeneous cylinder has

been analyzed by Bohren [20]. In that case, solving directly for the four unknown

coefficients is manageable. However, if even one more layer is added the coefficients

in the eigenfunction expansion are algebraically complex and unwieldy to find. This

can be seen in Appendix A, which presents an eigenfunction solution for scattering

by a perfectly conducting cylinder coated by a single homogeneous layer of chiral

media. An alternate technique is to set up and numerically solve a 4M x 4M

matrix equation which enforces boundary conditions at the M interfaces. To avoid

the computer CPU time and storage associated with large matrix equations, here

we generalize Richmond's method [120, 121) to apply to multilayer circular chiral

23
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cylinders. file present technique requires tile multiplication of Al 4 x 4 matrices

to determine the coefficients in the eigenfunction expansion. The difference between

the solutions for TM and TE incident plane waves is extremely simple, differing by

only a plus/minus sign at one step in the solution. Further, the addition of a surface

impedance center cylinder involves only one additional matrix multiplication.

3.1 The Eigenfunction Expansion

In this section, the eigenfunction expansion for a general multilayer circular chi-

ral cylinder, with or without a surface impedance center cylinder, is presented by

expanding the electric and magnetic fields in terms of right and left circularly polar-

I ized waves using the notation presented in Section 2.2. The geometry of the cylinder

is shown in Figure 3.1, where the constitutive parameters and the outer radius of

layer m are (pm, 6m, m) and rm, where m = 1,2,...,M. The right and left wave

numbers of the mth layer, kr and km', and the wave impedance, 71,,, are defined by

Equations (2.12) and (2.11). Note that m = 1 is the innermost material layer and

I m = M is the outermost material layer. The outer radius of the impenetrable surface

impedance center cylinder, when included, is denoted r0 . The external medium is

I free space, with parameters (Io, c,), wave number ku = wV,/juio, and characteristic

impedance q,, = V,/-41/Et,.

First, consider the fields external to the cylinder. These fields may be expanded

as an infinite sum of vector wave functions, M, and N,, which are related by [114,

sec. 7.1]:

V x N, = kM,, (3.1a)

V x M, = kN,. (3.1b)

1 These vector wave functions are solutions to V X V x C - k 2C = 0 and V • C = 0,

where C = M, or N,. In cylindrical coordinates, they may be written as

I N(,P)(k) = ie'j6Z,(P)(kp) (3.2a)

1 25



I

_ IM~~p)(k) jn .e,,, (")(kp)- enI ()(p)(.b

M F)(k) = t-. (Z. -,) - n e"Zt.() (32b 1

where Z,(/) is a Bessel function of type p (ZZ (3) = H ()n -

Z(4) = H(2)) and the prime indicates the derivative with respect to the argument. 3
In the case of a TMZ plane wave normally incident from € 1800, the incident

fields may be written as [115, sec. 5-8] 3
0C

E i = ie-jkox= E j-nN(')(k0 ) (3.3a) 3
H' = -j01e =k= _ j - "M ( ')(k) (3.3b)

where Equation (3.3b) is obtained from Equation (3.3a) using H x E and

V x Nn1  Mn . For the TEz case, to maintain the symmetry of the solution, the

incident fields are

Ei = je-sk =  _ j-nM(')(k,) (3.4a)
3. -OCI

H' =i~e-k = Y j-"N(')(k¢,). (3.4b)77o 7/ n =- oc

Due to the chiral cylinder the scattered fields will have TMZ and TEz compo- I
nents; therefore, the scattered fields are expanded as 3

Es - y j-" [aN('(k$,) + b')(kku)] (3.5a)

H S - J j-n [a,M(')(ko) + bN$')(ko)]. (3.5b)
r77n=-0 I

In the chiral cylinder, the eigenfunction expansion must account for the rotation

of polarization inherent to chiral media. In a z-independent problem, this results 3
in a coupling between the TMz and TEz fields, which prevents the eigenfunction

expansion from being written as a simple superposition of TMZ and TEz fields, as 3
was done in Equation (3.5) for the scattered fields in the free space region. How-

ever, the eigenfunction expansion can be written as a superposition of right and left 3
26 3
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circularly polarized fields. This is done by combining the vector wave functio-.:, M,

and N,,, to form right and left circularly polarized vector wave functions [20]

E(,) = M.)(kn) + N(P)(ku) (3.6a)

L - Mn)(kL) - N(P)(kL) (3.6b)

which satisfy the vector wave equation (2.15) and Maxwell's equations (2.17a) and

(2.17b) in a source-free chiral region. Then, the fields in layer m of the chiral cylinder

may be represented as

E'" = j-. c [,n(E) + d"(') + fE + E(+ I (3.7a)
[n lR, n n " jn *'R,n -4 n L,n]

n=-oc

OC

Hn" 1 -" E w('E) nfL-n " E E,()1  (3.7b)r / . [cE - dm. E-(L,,) + fn R ,',n n . -L,.n
7 m n=-o

where the c, dm, fn,, and gm are unknown coefficients and Equation (3.7b) is

obtained from Equation (3.7a) using Equation (2.18) of Section 2.2. Note that

the fields in each layer of the chiral cylinder are expanded in terms of inward E (I)

and outward E (') propagating right ER and left EL circularly polarized waves, thus

requiring four coefficients per layer.

Expanding Equation (3.7) to get an explicit representation for the field compo-

I nents in each layer produces:

E- = E -n cS°(kp) - dnJ71(k 1p)
| v = - C 12H . 2 n+f,71,H )(k,p) - g' nH(,(k-p)] e (3.8a)

Im =~ 31 j-- [cmJn(kp) + dmJ(kmp)
H7 m ,7=-oo

In +f~ 2) (kmp) + g, FU(2)(kmp)] e jnd (3.8b)

= Z - [cn '(kp) + dgJ,'(kmp)-=-o - -(c p

+ fmH,(2)'(k- p) + g H.2) (k- p)] e "n (3.8c)

Hm _, E - cmJ(mp ,, ,,=-mp)

27



1

+f7.HA'(V.p) - g fl(k"'p)] (3.8d)

m  [J('p) + L" U(k' p)I%(2 j-"d,

H(k-p)+ --H((k-p) ne' 0  (3.8e)
kn  k, ,

, c J,= ,,(k,'p)-L , (-p

f7 r ---: . R + -'I H , ( ) m H ( 2)e ' '°
(k1)- ' ( m ) n (3.8f)

3.2 Determining the Coefficients

This section presents a recursive technique for determining the coefficients of the U
eigenfunction expansions presented in the previous section. These unknowns in- 3
clude c"', d"', f,,", and g." in each of the Al layers as well as the a,, and b, from

Equation (3.5). This technique is a generalization of that developed by Richmond 3
for achiral multilayer circular dielectric/ferrite cylinders [120, 121]. The unknown

coefficients are determined by applying the boundary conditions of continuous tan- -
gential electric and magnetic fields at the boundary of each layer, which can be

written as I
E:n+1 = Em (3.9a) 3
Em + l= Em (3.9b)

H +  = H? (3.9c)

H n + 1 := H;. (3.9d)

I
I
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Using Equation (3.8), the boundary conditions can be expressed as

ni+1 C

cn cn[Z m+,] dm+

sm+1 = [z-] n (3.10)
fn

where
J,,(kmp) -J,.(k'np) H()(krnp) -I-I) (k'n P)

I [z"]:= J'(kjp) J(kZp) H,.2)'(kmp) H(2)'(kmp)

SJ,,(k'p) -- J(kmp) I H(2)(kmp) - 1-H( 2)'(kZp)

The resulting relationship between the coefficients for layers m and m + 1 can be

I represented in matrix form byI cM+1 r
dfn+l dnn +1 [Y M'  ?1f ' '  (3.12)

nl+1gn+  gnm

I where

[y ]: [Zm+] - ' [zm] . (3.13)

After simplification1 the matrix [Ym] is given by

I u ,,' , x (R) ' ,4)(L, R) U("4)(R) Xn4,4)(L,R)

[ I X('"4)(RL) U(")(L) X(4,4)(RL) U(4'4)(L) (3.14)

I - U ,'l)(R) - X(' 1 )(L, R) -U(4 )(R) -X(.4 ')(L, R )

X (1 1)(, (L) - U(")(L) -X(4,")(R, L) -U(4,) (L)

'The symbolic algebra program MACSYMATN supplied by Symbolics, Inc. of Cambridge,
Mass. greatly aided in this simplification.
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where 
I

p+)(S) = 7r1k rm, 17_+1] [Z(P)UkrZ(9)'k +

u (,T() = .7r14 ' , "t - , , ,,
-Zn()'(k'r,)z(.q)(km+lrm)] (3.15a)

X(P'"7)(S, T) = 1~k~r4 [7Y-+'r1] [7 Z()(k'-rm)Zn()'(k.-+r,,)

+ZP ")'(k-rm)ZWq)(k-+1 r,)j (3.15b)

and S, T are L or R. 1
3.2.1 Perfectly Conducting Center Cylinder 3
If the innermost cylinder is a perfect electrical conductor, the boundary condition

of zero tangential electric fields at p = ru can be written in matrix form as i
H( (kRro) -H(')(kLro ) f

H')(k) , o) ][f
-J(k?ru) J(kru) er (3.16) I

-ant Ro] -J(kLro) dn'

using Equations (3.8a) and (3.8c).

Solving Equation (3.16) for f, and g' in terms of c' and dn' produces 3
f] Y. 2  dn (3.17)

where I
Y - A.1[j.(knro)H((k2 o H , , 2)

,31 [(k'ru) + J. (k' ru )Hf)(k'ro)] (3.18a)

-u -2j
32 7 rr0A, (3.18b)

-2j (3.8c)I
4',- 7rkjoA,(

-(2 1 [Jn(kro)H (k n ro) + J (kLro)n(, (k)ro)] (3.18d)
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and

A,= H. 2) (kro)H2)' (kLru) + H (k (3.19)

To dcfirc a [YU] that can be used with Equation (3.12), Equation (3.17) can be

written as - , 1
cn Cn

1Y0 1 (3.20)

I 0

where
1 0 0 0

[yO] 1= 0 1 0 0 (3.21)

Y1 12 0 0

3.2.2 Surface Impedance Center Cylinder

If the innermost cylinder is described by TM and TE surface impedances the bound-

ary conditions at p = ro are given by [122]

ZTE- E= (3.22a)

ZTAt E.' (3.22b)

where the perfect electric conductor in Section 3.2.1 is the special case of ZTE = 0

and ZTAI = 0.

Using Equation (3.8) these boundary conditions can be expressed as

[c',J(kru) + dJl(kLr(,) +f (kro) + g' 1H(2) (kru)J

'J.[c"J(knro) + dJ.(kLro) + fIH.(2)'(k~ro) + g IH,2) (kLro)] (3.23a)

[c'Jn(kjro) - dJ(kLro) + f._H, 2)'(k, ru) _ gIH.,2)I(k)
+, (kn, Hf2 ) (2)

i',J(k'ro)- dJ, 1(k[ro) (kro) - g1 H(k2)' ru)] (3.23b)
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As in Equation (3.16), the relationship between the inward and outward propagating

waves in region 1 can be obtained by relating f,, and g' to c' and d'. by writing

Equation (3.23) in matrix form as[ZEH.(2)(jr) H(2) I(kjiro) ZEH,(,2) (kLrtI) - IIY)('(7rL) f

_ZT H(2),(k'ro)_ H( 2)( kro) ZTA .(H2)'(k)ro) + H(2)(kIr,

= [J'(k'r) - ZTE -J(kR~ro) J(klro) - ZTE!-J k r) 1 ,(.2)

Jn(k.ro) +ZTArtLdn(k-1r -Jn(kLro)-ZT-llJn(kry) d.'

Solving Equation (3.24) for fn and g, as was done for Equation (3.16), results

in [Y"] matrix elements given by

- - J,(kflr,)HO (kro) + JA(knro)H (kru) (1 + ZTIZTAI

31, 2

+ [ZTEJn(knru)Hn(2)(kLro) ZT!Jn,(khru)Hnt 21 (kLru)] (3 .25a)

(1 _ ZTEZTA k 2 (3.25b)

771 , 7rkr 0 A,

y,, = - -ZTE ZTA,) 2j (3. 25c)
71 7rkj~roA,,

J(kLro)H,()'(kkru) + Jn(kru)H4)(kj°) / ZT+

L - Ar + 2)ETA-17 2

+- -, [ZTEJ.(kru)H(2)(kl ru) - ZTAJ((kro)H(2)'(kro)] (3.25d)

where i
A.= [H(2)(k ,ro)H(2),(kro) + HY) (klro)Ht (k'ro)] (1+ L )

777
-2i [ZIHn(2)(kirt))Hn()(k~ro) - ZTAMH,2)(k ro )H,2)'(k4ro)] (3.26)I

A perfect magnetic conducting center cylinder is the special case of the surface

impedance boundary condition where ZTE = ZTAI - 00.
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3.2.3 Material Center Cylinder

If there is no center impenetrable cylinder, i.e., region 1 extends to the origin, then

the requirement of finite fields at 'he origin forces f, g = 0, i.e., no outward

propagating waves in region 1. To use the same formulation as in Equation (3.20),

define [Y"] by

1 0 0 0

[yO] = 0 1 0 0 (3.27)

0 0 0 0

0 0 0 0

3.2.4 Exterior Region

By defining the exterior region to be layer M + 1, the relationship between the

I coefficients for layers 1 and M + 1 is given by
C _r~ Xll X12 X13 X14

n nII
d11 + 1 X 21 X 22 X 23 X 24  d(3.28)
fAI+l X 31 X 32 X33 X 34  0

9"+1 X4 X 12 X 43 X41 0

where the matrix [XI is given by

[ = [YAJ] [yAI-l] ... [y2 [ [Y ] (3.29)

Note that Equation (3.28) applies for chiral cylinders with or without a surface

impedance center cylinder by the proper choice of [Y 0]. Requiring the different

representations for fields in the exterior region to be equal, i.e., E' + Es = E A + 1

and H' + H' = H"+l, results in the following relationships between (an, b,,) and
(CA1+1 + fnAl+, _h+l.

TAI

J.(kjp)+a.H,(2)(kOp) = (<+1 - dA'+') Jo( )

+ (fnf+ ) gAI+,) H( 2)( kop) (3.30a)
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7 ,E

J,( k(,p) +bnH(2)'(kop) C + dA'+') Jn(kop)
+ f t + 1 + I) H(2)'(ktlp) (.3b

J.(ko p) +bH,H)(ku.p) = + d"') .J(kup)

T M 
+ (f + +  g n H2)(kup) (3.30c) 3

J,'(kop) +a.H(2 )'(k,,p) (c,,+1 - d^I + ' ) J.(kup)

+ f.f~ _g, ) H,(2)'(kt, p) (3.30d)

TAI TE 3
where the and indicate terms that are nonzero for TMz and TEz incident

fields, respectively. From Equation (3.30) the coefficients cn'^+ and dA' + ' are given

by

c2+ 1 (3.3 1a)
n 2

_dI+' = +1 (3.31b)-n 2

where the plus and minus signs of + are used for TMz and TEz incident fields, I

respectively.

Using Equations (3.28) and (3.31) the solution for the coefficients c' and d' in

layer 1 is

c - 2(X,,X 22 - X21 X,2) (3.32a)

d1X 2 1 ±X1 I (3.32b)dn" - -2(X 1 X 22 - X 21X, 2)

where the plus and minus signs of ± are used for TMz and TEz incident fields, I
respectively. From Equation (3.30) the coefficients for the scattered fields are

an = f1+1 -g1+, (3.33a)

S= fnA+ + gM+I* (3.33b) 3
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These coefficients have the following properties:

a-, = a, (3.34a)

b-, b, (3.34b)

a,(TEz) = b,(TMz). (3.34c)

As a result of Equation (3.34c), the cross-polarized echo widths of circular cylinders

for TMz and TEz incident plane waves are identical.

In summary, Equation (3.33) provides the unknown coefficients in the eigenfunc-

tion expansions for the scattered fields given by Equation (3.5), which can be written

in the far field as

U2j e -jkop

7r k a,, e (3.35a)

2je-kop
= j bei' (3.35b)

using the large argument approximation for the Hankel function. In addition, the

internal fields are found using Equation (3.7), where the coefficients are found using

m 1

-- n  Cn

C, dr,

f m ym -1 ] ym -2 ... y2 ] [ [y o dYOI (3.36)
n 0

gri 0

3.3 Numerical Results

This section presents numerical results for TMz and TEz scattering by several dif-

ferent multilayer circular chiral cylinders in free space. Comparison is made with

similar multilayer achiral cylinders in each case. For convenience, all data is at a

frequency of 300 MHz. The chiral parameters used in this section obey the limit set

Iin [102] of J ,j < /-

---- 35



U
I

3.3.1 TMz Incident Plane Wave

This section presents the bistatic scattering patterns for a low-loss two-layer chiral U
cylinder with and without a perfectly conducting center cylinder for a TMz incident

plane wave with comparison to equivalent achiral cylinders. Figure 3.2 shows the

co-polarized and cross-polarized bistatic echo widths for a TMZ plane wave (E; =

e - j k ' ) incident upon the chiral cylinder with a perfect electric conducting center

cylinder. The outer radius is 1.25 free space wavelengths. The curve marked 'Achiral

( = 0)' is the bistatic echo width for an identical multilayer cylinder with the

chirality admittance set to zero in both layers. The chirality of the material clearly

caused a significant change in the co-polarized scattered fields while generating a low

level cross-polarized scattered field. The chirality admittance in the inner and outer

layers is 65% and 33%, respectively, of the theoretical maximum of I j < El/I set

in [102]. 1
Figure 3.3 shows the co-polarized and cross-polarized bistatic echo widths for

chiral and achiral cylinders with the same geometry as those in Figure 3.2 except I
that the conducting center cylinder has been replaced by the same material as the

inner layer. Note that the co-polarized and cross-polarized fields are of comparable I
magnitudes, indicating that the chirality of the cylinder has caused a significant

rotation in the polarization of the scattered fields. In addition, the bistatic pattern of

the achiral cylinder has more lobes than that of the chiral cylinder. This is unusual

because the chiral cylinder is larger electrically, since one of the two wavelengths

in chiral media is always smaller than that of the corresponding achiral media; I
therefore, its pattern should have more lobes. Figure 3.4 shows this point more

clearly using a polar plot where, because of symmetry, the upper half shows the

co- and cross-polarized bistatic echo width for the chiral cylinder and the lower half

shows the echo width for the achiral cylinder.

3
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Figure 3.2: The co-polarized and cross-polarized bistatic echo width of a two-layer
chiral cylinder with a perfect electric conducting center cylinder for a TMZ incident

*plane wave. 37



Two-layer Chiral Cylinder
Frequency =300 MHz
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Figure 3.3: The co-polarized and cross-polarized bistatic echo width of a two-layer
chiral cylinder for a TMZ incident plane wave.
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Two-layer Chiral Cylinder
Bistatic Scattering Paftern
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Figure 3.4: The bistatic echo width of the two layer chiral and achiral cylinders
shown in Figure 3.3 for a TMz incident plane wave.
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3.3.2 TEz Incident Plane Wave

This section presents the bistatic scattering patterns for a high-loss two-layer c'iiral i
cylinder with and without a perfectly conducting center cylinder for a TEz incident

plane wave. Internal fields and approximate surface currents on the center cylinder

are presented for the chiral cylinder with the perfectly conducting center cylinder.

Figures 3.5 and 3.6 are similar to Figures 3.2 and 3.3, except that they are for

the TEz polarization and for higher loss chiral media. In these figures the cross- 3
polarized fields are greater than the co-polarized fields for angles between 20 and 70

degrees, indicating that the chirality of the cylinder has caused a significant rotation

in the polarizatioh of the scattered fields. The chirality admittance in the inner and

outer layers is 23% and 80%, respectively, of the theoretical maximum of f ,.j < VE/I

set in [102].

Figures 3.7 and 3.8 show the near zone electric and magnetic fields along the

positive y axis for the chiral and achiral cylinders of Figure 3.5 with the perfect

electric conducting center cylinder. At the two material boundaries, y = 0.75 and 1

y = 1.25 meters, Ey and Hy are discontinuous as required. At the boundary between

free space and the outer material layer, the E, and H. fields of the achiral cylinder i
exhibit a much smaller slope discontinuity than the fields of the chiral cylinder.

Interestingly, these same fields at the inner material boundary, y = 0.75 meters,

exhibit almost no slope discontinuity in both cylinders. However, the related E, and

H, fields exhibit sharp slope discontinuities at both boundaries of the chiral cylinder.

In Figure 3.7, the magnitude of H, at the surface of the conducting cylinder is greater 3
than that of H,. This means that at the point (x = 0,y = 0.25m), the J, surface

current on the conducting cylinder is greater than the .J, i.e., the J, surface current.

For a conducting cylinder coated with an achiral material only the J surface current

will be nonzero for a TEz incident plane wave as shown in Figure 3.8. 3
Figure 3.9 shows the tangential magnetic fields at the surface of the conducting

center cylinder for the chiral and achiral cylinders shown in Figure 3.5. The J, 3
40
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I Figure 3.5: The co-polarized and cross-polarized bistatic echo width of a twe layer
chiral cylinder with a perfect electric conducting center cylinder for a TEZ incidentIplane wave. 41
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Chiral Cylinder with PEC
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Figure 3.7: Internal fields along x = 0 for the chiral cylinder shown in Figure 3.5.
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Figure 3.8: Internal fields along x 0 for the achiral cylinder of Figure 3.5.

44I



Chiral Cylinder with PEC
PEC Surface Currents

90

* " ' ° .. "" °..... i... .... " .. °'°*

/ ...:).?,H, oc J.::.."...
150 30

*Y
18 0... .. -. . ...... ...... ... .. ......-\ ........... .. ... .. -. . .. , .. - \

/\

8-- 0.8 1.2 1.60

210 AchiraI(t,=O) 33

~~~~zoc JO :' '.......'" ........ "

240 300
270

Figure 3.9: Internal H and H, fields at the surface of the conducting cylinder for
the geometry shown in Figure 3.5.
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current is greater than the JO current over the entire surface of the conducting

cylinder in the center of the two-layer chiral cylinder, even though the J. current 3
is zero on the surface of a conducting cylinder at the center of an identical achiral

cylinder. I
Figure 3.10 shows the near zone electric and magnetic fields along the X axis,

for the geometry shown at the top of Figure 3.5 with the perfect electric conducting

center cylinder. I
3.3.3 Chirality Versus Scattering

This section examines the effect of the chirality admittance on the backscatter and

bistatic scattering patterns. First, a homogeneous chiral cylinder with ,. = 2, Er = 3, 3
and a radius of 0.15 meters is examined over the range of , = 0 (achiral) to the

theoretical maximum of J&j < c/ .= 0.00325 [1021, for lossless and lossy media.

Figure 3.11 and 3.12 present the co- and cross-polarized backscatter echo width

versus the magnitude of the chirality admittance for TMz and TEz incident plane

waves. In all four cases, the cross-polarized echo width increases rapidly as ,

increases and equals the co-polarized echo width when , is approximately 18% of

the theoretical maximum. The most interesting case of the four is the TEz plane

wave incident on the loss, chiral cylinder. In this problem the backscattered field I
is entirely cross-polarized for a small range of the chirality admittance. Figure 3.13

shows the co-polarized bistatic scattering pattern of this cylinder for a TEZ incident I
plane wave for the full range of C. Even through the achiral ( , = 0) bistatic

scattering pattern has no deep nulls, this figure shows that deep nulls will occur

for certain ranges of ,. Interestingly, nothing significant happens at the theoretical 3
maximum of Iij < VE/-t set in [102].

Next, a homogeneous chiral cylinder with I, = 2, c = 3, a radius of 0.15 meters,

and a perfectly conducting center cylinder of radius 0.05 meters is examined over the

range of ,. Figures 3.14 and 3.15 present the co- and cross-polarized backscatter 3
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Figure 3.10: Internal fields along yi = 0 for the chiral cylinder shown in Figure 3.5.
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Backscatter versus Chirality
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5 Backscafter versus Chirality
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Figure 3.12: Backscatter echo width versus the magnitude of the chirality admittanceI for TEZ incident plane wave.
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echo width versus the magnitude of the chirality admittance for TMz and TEz inci-

dent plane waves. In all four cases, the cross-polarized echo width increases rapidly

as , increases and equals the co-polarized echo width when , is approximately 40%

of the theoretical maximum. As the radius of the conducting cylinder is increased,

the thickness of the coating is reduced and less material interacts with the incident

field, thereby producing less cross-polarized scattered fields. This relationship is

easily seen when comparing Figures 3.11 and 3.12 with Figures 3.14 and 3.15.
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Backscatter versus Chirality
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Backscatter versus Chirality
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3.4 Summary U
This chapter has presented an efficient recursive eigenfunction solution for scattering U
by a general multilayer circular chiral cylinder, with or without a surface impedance

center cylinder, for a TMz or TEz normal incidence plane wave. The internal fields

were expanded as inward and outward propagating right and left circularly polarized

waves, using circularly polarized vector wave functions, resulting in four unknown

coefficients in each layer. The resulting solution requires the multiplication of M 4 x 4 U
matrices for an M layer cylinder. The TEz solution differs from the TMz solution

by only a plus/minus sign at one step. Including a surface impedance center cylinder

requires only one additional matrix multiplication. An examination of coefficients

responsible for the scattered fields showed that the cross-polarized bistatic echo

width of circular cylinders is identical for TMz and TEz incident plane waves.

TMz and TEz bistatic scattering patterns for two-layer chiral cylinders with and

without a perfectly conducting center cylinder were presented as reference solutions.

These patterns demonstrated that the chirality of these cylinders caused a significant I
rotation in the polarization of the scattered fields. More significant was the effect

of the chirality on the internal fields. In one case, more J, than J6 current was I
induced on the perfectly conducting cylinder coated by two layers of chiral media

for a TEz incident plane wave, even though the achiral problem would have induced I
no J, current on the conducting center cylinder. The chirality admittance in these

cases was greater than 50% of the theoretical maximum of [ CI < VEL set in (102].

To examine the relationship between the magnitude of the chirality admittance 3
and scattered fields, backscatter and bistatic scattering patterns were presented for

the full range of ,. Even through the achiral bistatic scattering pattern may have 3
no deep nulls, the co-polarized bistatic pattern for a chiral cylinder can have deep

nulls for certain ranges of ,. In one case the backscattered field was entirely cross- 3
polarized for a small range of the chirality admittance. The cross-polarized backscat-

tered fields increased in similar fashion for all of the geometries examined as was 3
54 I
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I increased. 'Tie rW e of incrca~;c was dcpendent on the an.unt. of chira] xr~ijter~1,

I since chirality is a bulk effect.
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Chapter 4 |I
Scattering by an Arbitrary
Cylinder I
This chapter presents a pulse-basis point-matching method of moments solution [123, I
1241 to the two-dimensional problem of scattering by an isotropic inhomogeneous

chiral cylinder of arbitrary cross section in free space or in the presence of a perfectly 5
conducting half-plane. The method of moments solution for scattering by a chiral

cylinder is obtained using the volume equivalence theorem developed in Section 2.4 to 3
replace the chiral scatterer by free space and equivalent electric and magnetic volume

polarization currents (J, M), as shown in Figure 4.1. By enforcing the volume I
equivalence theorem in the chiral scatterer, a pair of coupled vector integral equations

for the currents (J, M) are obtained. These ,,upled vector integral equations are

equivalent to six coupled scalar integral equi ,o., . for (J., Jy, J,) and (M,, M, A2M),

which are solved using a pulse-basis point-matching method of moments solution.

This problem could be formulated in terms of surface currents on the chiral cylinder

[74, 80, 95]. The main advantage of the volume formulation is that it can more easily

':- inhomogeneous media. 3
The electric surface currents on the half-plane are not explicitly included as

unknowns in the method of moments solution. Instead, their effects are exactly 3
accounted for by including the half-plane Green's function in the kernel of the integral

equation [125, sec. 8.3). Efficient techniques for accurately evaluating the integrals 3
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Figure 4.1: Volume Equivalence Theorem (a) Original problem: impressed currents,
half-plane, and chiral scatterer. (b) Equivalent problem: scatterer replaced by free
space and the equivalent currents.

in this Green's function are presented in Appendix B. In the free space problem the

3 half-plane Green's finction is replaced by the free space Green's function.

4.1 Derivation of General Integral Equations

This section develops a set of coupled integral equations for the equivalent electric

and magnetic currents representing a chiral scatterer in free space or in the presence

of a perfectly conducting half-plane. In the original problem of Figure 4.1(a), the
impressed currents (', M' ) radiate the total fields (E, H) in a medium which is

free space except for the perfectly conducting half-plane and a chiral scatterer with

constitutive parameters (IL, E, ,) confined to the region R. The scatterer may

3 be lossy and inhomogeneous. As shown in Figure 4.1(b), the volume equivalence

theorem developed in Section 2.4 is used to replace the chiral scatterer by free space

3 and the equivalent electric and magnetic volume polarization currents

3 J = jw(CC - f(,)E + w/4,H (4.1a)

M = jw(it - ,o)H -wp ,E (4.1b)

U confined to the region R.
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In the equivalent problem of Figure 4.1(b), the total fields (E, H) at any point

in space are given by 3
E = Ei + EJ + EM (4.2a)

H = Hi+ HJ + HM (4.2b)

where (E', H'), (Es, Hi), and (EM, HM) are the fields radiated by (J, M'), J, and U
M, respectively, in free space or in the presence of the half-plane. Then, substituting

Equation (4.2) into Equation (4.1) yields

-EJ - EM - cE[HJ+HM]+aEJ = E'+CEH' (4.3a) I
-H - HM - cA![EJ + EM] + aAM = H' + cAfE (4.3b)

in region R, where CE, CA!, aE, and aAr are defined by
-,tt6 I

CE = - ) (4.4a)

CA! I
c^, = -Wk o) (4.4b)

aE = 1 (4.4c) 3
a1j (4.4d) 3aM -jw(p - o)

Equation (4.3) can be considered to be a coupled integral equation for (J, M) since

the fields (E j , H j ) or (EM, HM) can be written as integrals, over the region R

containing the chiral scatter, of J or M, respectively, dotted into the appropriate

dyadic Green's function [1261. For example, EM could be written as

EM(r) f J M(r') .(r, r') dv, (4.5)
R

where r' is the source point, r is the field point, and G is the electric field dyadic

Green's function for the magnetic source radiating in free space or in the presence

of a perfectly conducting half-plane. I
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4.2 Integral Lquations for a Two-Dimensional

I_ Body

In this section, the general integral equation of the previous section, Equation (4.3),

is simplified for the case of normal incidence scattering by chiral cylinders of arbitrary

Ucross section. Since this is now a two-dimensional problem, there are some simpli-

fications from the general three-dimensional case. In particular, the TM currents

I- (J, M,, M.) generate only the (E,, H,, Hy) fields and the TE currents (M2 , J.', J,)

generate only the (H., E,, Ey) fields. In this case, Equation (4.3) reduces to the

following six scalar equations valid in R:

E, - E 'z - E "Y - cE(Hz + HI + H" +aLJz = E'+CEH' (4.6a)

H H -- - H,, c (E!"E E.4 ) +a H' cE 1  (4.6b)

-Hjz - HA-- - cH(E'' +E/ + E) + aAA,= H' + cwE, (4.6c)

-CAI(E:z + EA' + EA',)- HzA - Hf" - Hz" + ajM, = Hz + cAfE (4.6d)

S-cE(H" + H." + H'Y) - EYA - E{-- Ef.' + aEJ = E,' + CFH; (4.6e)

-cr(H Y±g - +H") - E - Ej' - EjY + aEJy = E' + cEHY,. (4.6f)

3 In Equation (4.6), the superscript indicates the source and the subscript the field

component. For example, H 'z is the y component of the magnetic field of J. and E'.

3 is the i component of the electric field of (J, M') in free space or in the presence

of a half-plane. For normal incidence scattering by achiral cylinders, the TM and

TE currents are uncoupled and can be determined separately [1271-[1291. However,

Equation (4.6) shows that the TM and TE currents are coupled for chiral cylinders,

and it is therefore necessary to solve for all currents simultaneously.

I
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Centroid (x2 ,y3)

(xIY 4 ) * Pn or

Rn Pn' cell

" I
(X,,y 1) (x2,Y2)

X

zI

Figure 4.2: A trapezoidal cross section cylinder split into N smaller trapezoidal cells. I
4.3 Method of Moments Solution I
The pulse-basis point-matching method of moments solution of Equation (4.6) is

presented in this section. For convenience, the chiral cylinder is restricted to be 3
composed of one or more blocks of trapezoidal cross section. Without loss of gener-

ality, consider a single trapezoidal cross section cylinder as shown in Figure 4.2. The

trapezoid is split into N smaller trapezoidal cells by dividing the opposite sides of

the trapezoid into equal segments. These cells must be sufficiently small so that the 3
electromagnetic fields and the constitutive parameters of the chiral cylinder can be

considered as essentially constant within each cell. For a pulse-basis point-matching I

method of mments solution of scattering by achiral cylinders, the maximum dimen-

sion of the cells is typically less than one-tenth of the wavelength in the material. I
The region occupied by the nth cell is denoted by Rn, and has cross-sectional area

A,. Now define the volume electric and magnetic current pulse expansion functions

for n = 1,2,...,N as I
P., I /A,, A/m 2, within R, (4.7a)

0 0, otherwise
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P.1 = 1/A,, V/m, within R(7
p 0, otherwise.

The equivalent electric and magnetic currents can then be expanded as

3 = iJ+ ,iJ+iJ

IN N N

= EZ C.P+. _CnPS+ zCPu (4.8a)
n=l n=l n=!

M = iMi'h+fM.+ MA

N N N

i- . .P "' + K . + -i K , . " 1 (4 .8 b )

n=l n=l n=I

Note that for N cells there are 6N unknown coefficients: C ., Cy, Cin Krn, Kyn,

and K, (n = 1,2,...,N).

The pulse-basis point-matching method of moments solution is obtained by sub-

stituting Equation (4.8) into Equation (4.6) and requiring the resulting six equations

to be exactly satisfied at the centroid of each of the N cells. This transforms Equa-

tion (4.6) into a 6N x 6N system of simultaneous linear equations which can be

compactly written in matrix form as

[Z + AZ]I = V. (4.9)

This equation c-n be symbolically decomposed into submatrices representing the

relationships between the TMz and TEz fields and currents

TM/TM TM/TE TM TM

- - . (4.10)

TE/TM TE/TE TE TE
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4.3.1 The Impedance Matrix [Z]

For an inhomogeneous chiral cylinder, the impedance matrix [Z] can be written as I
a 6 x 6 block matrix

Z11  Z12  Z13 CEZ 4  CEZ15 CEZ.16

Z21 Z22 Z23  CAZ 51  CAIZ55 CAZS6 I
Z31 Z32 Z33  CMZ 64 CAIZ 65 CAIZ 66[z] = (4.11)

CAIZII CM Z12 CAIZI 3 Z.H Z-15  Z16

CEZ 21 CEZ 22 CEZ2 3  Z 54  Z55 Z56

CEZ 3 1I CEZ32 CEZ33 Z64  Z65 Z66  3
where each of the Zj is an N x N matrix, where the m,n element is the negative

F, field of the P j(.) current expansion function evaluated at the centroid of the cell
m, i.e.,

Zij(m,n) - F(PI(n))I (4.12)

where 3
EH, i=1
H , i=2 3
14, i=3

F y, 3(4.13)
H,, i=4

EX, i=5

EY, i=6 I

6
I
I
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and
P,,j=x
P, j 2

yP, , 3 (4.14)
zPAn, j 4

j PJ, j 5

I for m, n = 1,2,..., N. For example, the m, n element of Z23 is -Hx(jP,,") evaluated

at the centroid of cell m.

The CE and CA! are N x N diagonal matrices given by

cE ] 0

CE ".15a)
0 eE IN

CM [ "' . (4.15b)

L0 CAI IN

where CE M is CE from Equation (4.4) evaluated at the centroid of cell m and similarly

for cj I.

The computational effort to obtain the free space impedance matrix [Z] can be

reduced by recognizing simple relationships between the Zj block matrices. Let

(Ej, H j ) and (EM, HM) denote the free space fields of the arbitrary electric and

magnetic.currents J and M, respectively. Then, directly from Maxwell's equations,

it can be shown that if J is numerically equal to M, then

EM -- HJ (4.16a)

HM 0E/70, (4.16b)

where it, = V.tJ/Eo is the characteristic impedance of free space and - should be

read "numerically equal". Examining Equations (4.13) and (4.14), and noting that
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P.-= P,, yields

Z.-1- Z45 Z46  1I Z(4 -. )

Z54 Z55 Z56  - Z 21 72Z 22  z (4.1)I

Z61 Z65 Z66  -Z 31 ?) Z3 2 7Z 3U I
4.3.2 The Impedance Matrix [,AZ]

The impedance matrix [AZ] is a 6N x 6N diagonal matrix given in block matrix I
form as

AZ 1  0

[AZ] 0 AZ2 2 AZ 33  0 (4.18)

0 AZ14 5 5  

I

0 AZ 6 6  3
Each of the AZj,'s is a N x N diagonal matrix given by

a,u/A, 0 I
AZ, 0 .. ] (4.19)

a, N/AA

where A,, is the cross-sectional area of cell m and ail, is given by

for i=1,5,6 (4.20) I
" a { I ', for i=2,3,4,

where aE[,j is aE- from Equation (4.4) evaluated at the centroid of cell m and similarly I
for a4 I .
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4.3.3 The Current Vector I

The current vector I is defined as a 6 element block vector

K.

I = K (4.21)
K

c.

where the coefficients Cr., C,,, C2 ., Kn, Ky,,, and K,,, (n = 1,2,... N) of Equa-

tion (4.8) are contained in the length N column vectors Cx, C, C., K., K., and

K., respectively.

4.3.4 The Voltage Vector V

The voltage vector V is also defined as a 6 element block vector

E; + CEH,

H' + CAIE'
Hy + CAIE'

V= (4.22)

H" + CAIE:

E" + CEHl'

E,'+ CEH;

where the terms EX, E', E', H. , H, H are length N column vectors consisting of

the fields of the impressed currents (J', M') evaluated at the centroid of cell m

1,..., N. For example, the mth element of Ez' is the i component of the electric

field generated by the currents (J,M'), evaluated at the centroid of cell m. CE and

CA, are the N x N diagonal matrices defined in Equation (4.15).
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T Ei  I
Yl

K- 1.2 m -4- X

/r = 4.0, Er = 1.5, tc = -0.0016

maximum thickness = 0.04 m

Figure 4.3: A TMz plane wave normally incident upon a tapered chiral slab.

4.3.5 Scattered and Internal Fields I
Equation (4.9) can be solved for the current vector I which, when substituted into

Equation (4.8), provides an approximation to the equivalent electric and magnetic

currents (J, M). The scattered fields are simply the fields of (J, M). 3
The total internal fields at the centroid of a cell are given by

E =w -I -11- + t2 2] (4.23a)

H - j(E'- (,)M + tCj (4.23b)
W [(C -_E)(I - t 0) - 2, 2]

where (IL, e,, c) and (J, M) are evaluated at the centroid of the cell. I

4.4 Free-Space Numerical Results I
This section presents numerical results for TM and TE scattering by a variety of

chiral cylinders in free space. All data is at a frequency of 300 MHz, and includes

both echo width and internal fields. 3
Figure 4.3 shows a TMz polarized plane wave normally incident upon a chiral slab

(E' = ej "k", where k, is the free space wave number). The center section of the slab 3
66 3
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is 0.82 'ieters wide and (J.0I incters thi, ih. i e I apered scctions are cach 1.2 meters

long. The slab is lossless with parameters of ir = 1.5, Ir = 4.0, and , = -0.0016

A/V. Near the origin the fields for the tapered slab should approximate that of an

infinite slab of uniform thickness 0.04 m. Figures 4.4 and 4.5 show a comparison of

the method of moments solution for the total fields of the tapered slab to the exact

solution developed in Appendix C for the infinite uniform slab along the line x = 0.

The phase of the fields has been normalized by dividing fields by ej ko0 , i.e., the phase

of a plane wave propagating in free space in the -j direction. The incident electric

field is a .i polarized plane wave. When this wave hits the uniform slab it produces

a purely i polarized reflected wave, resulting in a partial standing wave pattern to

the right of the slab. As the wave enters the slab, the polarization begins to rotate,

causing the i component of the electric field to increase, and the i component to

decrease. Finally, as the wave exits the slab it is a linearly polarized wave, but with

its polarization rotated from i. The solution for the tapered slab has a small i

polarized back scattered field which is not present for an infinite slab.

Next the method of moments solution is compared to the exact eigenfunction

solution [20] for the bistatic echo width of a 0.1 m radius circular chiral cylinder.

The inset in Figure 4.6 shows a TMz plane wave (E = e- j k°1) incident upon a cir-

cular cylinder approximated by a number of trapezoidal cells, corresponding to the

method of moments expansion functions. Denoting d as the maximum dimension of

the cells, Figure 4.6 shows the eigenfunction and method of moments solution for

d = 0.2Am, (18 cells) and d = 0.1Am (63 cells). A,, denotes the minimum wavelength

for left or right circularly polarized plane waves in the chiral media. For the ma-

terial parameters in Figure 4.6, A.. 2 0.301 meters. Note that as the number of

cells increases, the method of moments solution approaches the exact eigenfunction

solution for both the co-polarized and cross-polarized scattered fields.

A comparison of the eigenfunction and method of moments solution for the

bistatic echo width for a TEz plane wave (H! = e-Jko 7/_/) incident upon a 0.15
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Tapered Chiral Slab3

Pr4.O, Erl1.5, tc=-O.OO16

1.5 Freq.=300 MHz
1.5_

Infinite Slab,---Momnent Method z

-X I

L I T 0 .5 .....E
0.04 mn

0.0 I I .. ........ ........ I

-9............ .................

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.53

y( M)

Figure 4.4: The magnitude and phase of the E, and E, fields along the y-axis for

the tapered chiral slab shown in Figure 4.3.I

683



I Tapered Chiral Slab

It P'4.0, Cr =1. 5, G = -0.0O016
1. Freq.=300 MHz

Infinite Slab

IMoment Method
.E...0 ... . . . . . . . . . . . . ..................... .............

I -xI
~0 .5 ..... .. . ...... .. ... ..

Z: 0.04 m

0.0 H ~

I180 ..
9 0- ----. ..... ..... ....

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

Iy y(M)

Figure 4.5: The magnitude and phase of the H. and H, fields along the y-axis forI the tapered chiral slab shown in Figure 4.3.
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Chiral Cylinder, Radius = 0.1 metersU
V+=4.O, Er= 1.5, G~=0.0005

Freq.=300 MHz

-~---63 cells, d=.1Xm

Cross-polarized (E)
-C - 1 0 .. .... ..... ... .... ..I.. ........ ....... ....

_ 7I
C,1

0i

0 30 60 90 120 150 180I

S(deg)

Figure 4.6: The co-polarized and cross-polarized bistatic echo width of a circular
chiral cyinder for a TMZ incident plane wave.I
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I Chiral Cylinder, radius = 0.15 meters
Pr 2, tan 6m=.05, Freq. =300 MHz

Er 3 , tan 6.=.05, 4 c=.0O2

m Cross-polarized (O

-9-

I 0

W -30......

-40 . . . . .. . . . .I0 30 60' . 9'0 120 150 180

*~ ~(deg)

Figure 4.7: The co-polarized and cross-polarized bistatic echo width of a circularI chiral cylinder for a TE;, incident plane wave.
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m radius lossy circular chiral cylinder is shown in Figure 4.7. Note that the cross-

polarized field is greater for most angles than the co-polarized field, indicating that

the chirality of the cylinder has caused a significant rotation in the polarization of

the scattered fields. For comparison, the echo width for an achiral cylinder, obtained

by setting , = 0, is also shown. A segment size of 0.05 Am was required to obtain a

well converged result, where A,, 2 0.228 meters for the material parameters shown. 3
The backscatter (0 = 1800) echo width for this geometry was highly sensitive to the

segment size and in Figure 4.7 the greatest error occurs at 0 = 1800. The backscat- I
ter echo width of this cylinder was examined in Figure 3.12 of Chapter 3 for the

fill range of , and found to be highly sensitive to the value of 4, in the region of

& = 0.002. The sensitivity of this cylinder to segment size may be related to the

sensitivity in , in the same way the calculated scattering from a resonant body is

sensitive to minor changes in its materials and geometry, as well as the method used

to calculate the scattering.

The magnitude of the internal fields along the cylinder's centerline are shown in

Figure 4.8. As the incident H, field propagates through the cylinder, the H, internal

field decreases and the E, field increases due to the chirality of the material. This is

in addition to the effects due to the cylindrical geometry. The most significant effect

of the chirality, besides genezating cross-polarized fields, is to reduce the effective

wavelength in the cylinder, as well as the actual wavelength in the medium. For

the achiral cylinder, the actual material wavelength is 0.408 meters with a spacing

of 0.12 to 0.15 between the peaks and valleys of the internal fields. The right and

left wavelengths of the chiral medium are 0.228 and 0.730 meters, respectively. The 3
spacing between peaks and valleys of the internal fields varied between 0.03 and 0.09

meters, with 0.05 meters being typical. Based on the achiral cylinder, the spacing

should have been 0.067 to 0.084 meters. The chirality caused approximately a 25%

reduction in the effective wavelength in the medium beyond that predicted based I
on the smallest chiral wavelength. This becomes very important when choosing the 3
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Chiral Cylinder, radius = 0.15 meters
/b= 2, tan 6m=.05, Freq. =300 MHz

IEr 3, tan 6e=.05, C=.002
1.5I AchiraI (4=o)

IE

* 0.5 .....

1 2.0 .K"Eigenf unction

2.I- - 6 e l , d .5 , ... .................. ....
Icia - 10O

0.5 0. 10....... -. 05 . 00 0.. . 0501001

Figure 4.8: Internal fields along y = 0 for the chiral cylinder shown in Figure 4.7.
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I
cell size to use for a method of moments solution. For the point-matching pulse-

basis solution used here, the cell size for the achiral cylinder should have been 0.041

meters, using a ten cells per wavelength rule. Using the same rule, the cell size in

the chiral cylinder should have been 0.023 meters. However, after adjusting for the

observed reduction in the effective wavelength in th! chiral cylinder, the cell size

should be 0.017 meters. Overall, the chirality caused a factor of 5 increase in the

number of cells needed for the method of moments solution.

Figure 4.9 shows the bistatic echo width for a 0.1 m x 2.0 m chiral slab with a

TMz plane wave incident at 300 from the x-axis. The cell size of the basis functions

is 0.057 A,, where A,,, 0.35 meters for the material parameters shown. As in the

previous figures, the chirality has generated a substantial cross-polarized field. The

magnitude of the internal fields along the x-axis of the slab are shown in Figure 4.10.

As the E, incident field propagates along the slab, a H, internal field is generated

by the chirality of the material. Figures 4.11 and 4.12 show the bistatic echo width

and internal fields for the 0.1 m x 2.0 m chiral slab shown in Figure 4.9 for a TE 7  3
plane wave incident from 30' off the x-axis. The co-polarized bistatic pattern in

Figure 4.11 is very similar to the co-polarized bistatic pattern in Figure 4.9. The

cross-polarized bistatic patterns are almost identical. In Figure 4.12, the internal

fields also show almost the same patterns as in Figure 4.10, except E and H are

reversed. As the H. incident field propagates along the slab, a E, internal field is

gcnerated by the chirality of the material, just as in Figure 4.10. i

Figure 4.13 shows an inhomogeneous chiral slab, identical to that shown in Fig-

ure 4.9 except that , = 0.0005 A/V for x > 0, and , = -0.0005 A/V for . < 0,

with a TMz incident plane wave from 300 off the x-axis. The most significant

change from Figure 4.9 is that the field scattered back along the T-axis is 20 dB

lower. The magnitude of the internal fields along the z-axis of the slab is shown in

Figure 4.14, which is similar to Figure 4.10 except that the H, field, which increased

along the slab in Figure 4.10, decreases suddenly at the interface between the two
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I Chiral Slab
* =Lr-2, Cr=3, c'=0.0 00 5

Freq.=300 MHz
20... ,..... . ..

Co-polarized (E,)
10 . ... .... ... ... .... ... ... .. . ... .... ... .. .... ... . . ... .............. ................IE Cross-polarized (EO)

m 0 ............ .. ..... ..... . .............. ..

" "! 5xl100cells •- 0 ........ ......1 - 0 .................... ....... ... .. ..........
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-C-- 2. E

34 0 ... . ' . . .... ....... W . ......... ....
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(deg)

Figure 4.9: The co-polarized and cross-polarized bistatic echo width of a 0.1 m. x 2.0
m homogeneous chiral slab for a TMZ plane wave incident at 30' off the x-axis.
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Chiral Slab
Pr =2, Er=3, G =0.0005

Freq.=300 MHz
20......... ........ ,..... ..

Cross-polarized (Ho) Co-polarized (H,)

..................... ................. ................. ....................................... ... .....................

S 10 ........ .................

V / \ i
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S-20 -.. ... ... 5x100 cells .............
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I..... -........-30..0...
,1 0. M x

- 4 0 ... , ..... ... .

0 60 120 180 240 300 360

(deg)

Figure 4.11: The co-polarized and cross-polarized bistatic echo width of a 0.1 m x
2.0 m homogeneous chiral slab for a TEz plane wave incident at 300 off the x-axis.
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Chiral Slab
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Figure 4.13: The co-polarized and cross-polarized bistatic echo width of a 0.1 m xI 2.0 m inhomogeneous chiral slab for a TMZ plane wave incident at 300 off the x-axis.
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chiral materials in Figure 4.14. Figure 4.15 shows the inhomogeneous chiral slab

of Figure 4.13 with a TEz incident plane wave from 30' off the x-axis. The most

significant change from Figure 4.11 is that the field scattered outside the main broad-

side beam is at least 5 dB higher for both co- and cross-polarized fields. Comparing

Figures 4.13 and 4.15, the cross-polarized scattered fields are significantly different,

unlike in previous comparisons between the cross-polarized fields for TMz and TEz

incident plane waves. This means that Equation (3.34c), which showed that the

cross-polarized bistatic echo widths of circular cylinders for TMz and TEz incident

plane waves are identical, is only true for circular cylinders. However, Figures 4.16

and 4.17 show that the cross-polarized backscattered fields are identical for TMz

and TEZ incident plane waves. The numerical results used to generate Figures 4.16

and 4.17 matched within 0.003 dB and 0.010 for magnitude and phase, respectively.

4.5 Half-Plane Numerical Results

This section presents numerical results for TMz and TEz scattering by two geome-

tries, a chiral slab on a half-plane and a double-wedge covering the tip of a half-plane.

All data is at a frequency of 300 MHz. The chiral parameters used in this section

obey the limit set in [102] of !1, < V6 I.

Figure 4.18 shows the backscatter echo width pattern for a TMz plane wave

(E; = e- j k (xcosd'+ y sin 0')) incident upon a lossless chiral slab at the tip of a perfectly

conducting half-plane. The slab is 1 meter wide and 0.2 meters thick, with parame-

ters of E,= 4.0, p, = 1.5, and (, = 0.002 A/V. For comparison, the echo widths of

the achiral slab and of the bare half-plane are also shown. Although the half-plane

is the dominant scatterer, the presence of the chiral slab does produce a significant

Ihange to the echo width. In particular, the chirality produces a cross-polarized

component to the echo width which, in the region 0' _ 1200, is of comparable mag-

nitude to the co-polarized echo width. This cross-polarized field is a direct result of
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* Chiral Slab

Ptr=2, Er=3, tr =0.0005
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Figure 4.16: The co-polarized and cross-polarized backscatter echo width of a 0.1 mI x 2.0 m homogeneous chiral slab for a TMZ plane wave incident at 300 off the x-axis.
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Chiral Slab
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Figure 4.17: The co-polar. -d and cross-polarized backscatter echo width of a 0.1 m
x 2.0 mn homogeneous chiral slab for a TEZ plane wave incident at 300 off the x-t-xis.3
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Chiral Slab & Half-Plane
ElPIr = 1.5
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Figure 4.18: The co-polarized and cross-polarized backscatter (4 S)echo width
of a lossless chiral slab at the tip of a perfectly conducting half-plane.
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the rotation of polarization which occurs in a chiral medium. The magnitude of the

internal fields along the center line (y = 0.1 m) of the slab is shown in Figure 4.19 for I
0' = 600. Again, the cross-polarized fields (E-, E, H,) are a result of the rotation

of field polarization in the chiral medium, and are of comparable magnitude to tile I
co-polarized fields (E,, Hx, Hg).

Figure 4.20 shows the bistatic scattering from a perfectly conducting half-plane I
with a lossy chiral double-wedge covering the tip. The double-wedge is ? metcrs ":dc

and has a maximum thickness ot 0.08 meters at the center. The upper graph shows

the co-polarized and cross-polarized bistatic echo widths for a TMz wave incident 3
from 180' (E' = e-J kr). The bistatic echo width for an identical achiral (&, = 0)

double-wedge and for the bare half-plane is also shown for comparison. The lower 3
graph displays the same data for a TEz wave incident from 00 (H' = e k°x). In

each case, the chiral double wedge causes a significant modification to the scattering 3
from the half-plane. For example, for the TMz case, the chiral wedge reduces the

edge on backscatter ( 1 =80°) echo width from -8 dB/m to about -60 dB/m, while 3
the achiral value is about -16 dB/m. The chirality also produces a significant cross-

polarized component for both the TMz and TEz cases. Again, these cross-polarized 3
fields are a direct result of the rotation of polarization in chiral medium.

I
I
I
I
I
I
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Figure 4.20: The co-polarized and cross-polarized bistatic echo width of a perfectly
conducting half-plane with a chiral double-wedge at the tip.I
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4.6 Sumnmary

This chapter presented a hybrid integral equation method of moments/Green's func-

tion solution to the problem of TMz and TEz scattering by an inhomogeneous chiral

cylinder of arbitrary cross section in free space or in the presence of a perfectly con-

ducting half-plane. The volume equivalence theorem for chiral media was used to

formulate a pair of coupled vector integral equations for the equivalent electric and

magnetic volume polarization currents representing the chiral cylinder. For chiral

cylinders, this pair of vector equations was shown to be equivalent to six coupled

scalar equations, which included coupling between the usual TM and TE polariza-

tions. These equations were solved by the method of moments, and numerical data

was shown illustrating the convergence and accuracy of the method of moments

solution. As in the previous chapter, the chirality of the cylinders caused a signif-

icant rotation in the polarization of the scattered fields. The result was that the

cross-polarized fields, in the near and far zone, can be as large or larger than the co-

polarized fields. In addition, the numerical results showed that the cross-polarized

backscatter echo width of at least one noncircular geometry is identical for TMz

and TEz incident plane waves. An examination of the internal fields of one chiral

cylinder showed that the number of cells needed in the method of moments solution

increased by a factor of 5. Part of this increase is due to the short wavelength of

one of the circular polarizations in chiral media. The remaining increase remains

unexplained and may be due to the interaction of the two circular polarizations with

different wavelengths.

I
I
I
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Chapter 5 |I
A Microstrip Line on a Chiral
Substrate I
This chapter presents a spectral-domain Galerkin method of moments solution for a

microstrip transmi. sion line on a chiral substrate. Most chiral guided wave structures

have bifurcated modes [103J-[109], i.e., pairs Of modes with the same cutoff frequency.

The chiral microstrip line does not have bifurcated modes; thus, the dispersion

curves are single valued. However, the longitudinal fields and currents each contain a 3
significant asymmetric component which is not present for an achiral microstrip line.

Similarly, the transverse fields and currents both contain a symmetric component I
which is absent in the achiral case.

The propagation constant and currents for the microstrip line are calculated us- i
ing the spectral-domain approach [130, 131], which is a Galerkin method of moments

solution where the impedance matrix and fields are calculated by numerically eval-

uating the Fourier transform of a spectral Green's function. This Green's function I
accounts-for the effects of the chiral substrate and the perfectly conducting ground

plane. The chiral substrate causes the additional longitudinal asymmetric and trans- -
verse symmetric field components, requiring the expansion for the longitudinal and

transverse currents to contain both even and odd components. This requirement 3
is satisfied by expanding each current in terms of Chebyshev polynomials weighted

9
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/PEC z x

Figure 5.1: Microstrip line on a grounded chiral slab.

by the edge conditions [131]-[135]. A detailed discussion on edge conditions can be

found in [136, pp. 385-387].

5.1 Microstrip Field Expansions

The geometry of the problem and the field expansions for each region are presented

in this section. The open microstrip line on a grounded chiral slab is shown in

Figure 5.1, where the slab (region II) has constitutive parameters (p, e, 4,) and

thickness T. The right and left wave numbers, kR and kL, and the wave impedance,

i/, are defined in Equations (2.12) and (2.11). The microstrip line is W wide,

infinitely thin, and perfectly conducting with a current distribution of J(x)e- jk '*.

Region I (y > T) is free space, with parameters (po, E0 ) and wave number k0 =

5.1.1 Field Expansions in the Free Space Region

First, consider the fields in region I. Since this is a source-free achiral region, these

fields may be expanded as the sum of a TMV field and a TEv field [115, sec. 3-121.

These fields may be constructed from the magnetic and electric vector potentials
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given by

A = kr T J A e- (zx~k~d+k'z)dkx (5.a)

-0 I

F = 2ir Jf e-J(kx+k+kz)dk. (5.1b)

where ky = -j + k+ - k02, satisfying the wave equation and the radiation con-

dition (see Appendix E). The functions A and F are the Fourier transforms of A,

and F. with the term e-j(kyy+ k 'z) factored out, and are determined by enforcing the

boundary conditiozi at y T. The TMV fields are obtained from Equation (5.1a) I
using H =V X A I

HX = -Le jk f kA e-j(k x+k,,+k.z) dk1  (5.2a)

27r f

Hy = 0 (5.2b)

H _ f2rejkyT c k,A e-'(kZ+ky+kz) dk, (5.2c)
2-0

e - ejk iT c k A e-j(kk+kz)dk (5.2d)
27"r w e()kI

_ ekT f k + k)A e-(k+kyy+k z)dk.1  (5.2e)

E_, - E -Ij kk~A e )dA, (5.2f)

The TE fields are obtained from Equation (5.1b) using E = -V X F

E = eIT k:e1l'+k~+k)dk (5.3c)Ey 0 (5.3b)

27r O
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H. - J kJ7kP e- (k +kkz)dk (5.3d)

2r Wls 0j e jkT c2 p A x k y k

-00

27r wIo I

5.1.2 Field Expansions in the Chiral Slab

In the chiral slab, the fields are expanded in terms of the right and left circular

vector potentials developed in Section 2.3. To satisfy the boundary conditions of

zero tangential electric field at y = 0, a quasi-TMy field can be formed by the sum

of a RCy field and a LC1 field. These RC and LCy fields are formed from the

vector potentials

R) ~ ~~ orjkxk

R , - 27r f QA OS ky.R e- iJ"+ "dkx (5.4a)

I -C
Ly,Aj - j Q^coskj,,Lye-'J( "k,+ ")dkx (5.4b)

where kyR = -j /k2 + k - k, and k,.L = -j /kx + kz2 - k2. The resulting field is

a TMy field if t, = 0; hence, the name quat;-TMy - imilarly, !? "iasi-TE- field can

be formed from the vector potentials

RI,E =2 - QE sin kyR y e-j(kzx+k, 7)dk x  (5.5a)

L E = Q E k,L y e, k, + (5.5b)

The functions QAI and QE are determined when enforcing the boundary conditions
Iat y =T.
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The quasi-TM1 electric fields are calculated by substituting the RC) and LC)

vector potentials from Equation (5.4) into Equation (2.24) of Section 2.3, producing

ER.. , j f (kkun sin ky.R y + k, cos ky ,, Y e-ktz+k2)dkx (5.6a)

ER 1,  = k. + k__ o kv, (k ' +kz)dk, (5.6b)2nu -7 2r f k R

0CR

ER.z = 27 Q1 (k k1 ? sin k,.nY - k, cosku.nY) e-j(kx+kzz)dk, (5.6c)

E .u=21r- k R

-c

E_, = 2 f Q AI ki, sin ky,n Y - k , coskRY e-(k-+kIC)dk. (5.6d)

Enu = 1 f QA kx2 + k COS k ,L y e- (k27+k z)dkr (5.6e)

EL. = - Q ( I kky. L sin kyL y + kx cos ky.Y e-(kx+±k z)dk. (5.6f)

-O) I

Similarly, the quasi-TE1, electric fields are calculated by substituting the RCy and

LCI. vector potentials from Equation (5.5) into Equation (2.24), producing3

0cc

1R~y L o, k r k inky e(k,+kz)dkd, (5.7b)
2- r k ,R

- c

ER, = f JQE (_ k~k sin k1,,R Y - kCOS k1, ,R e-~r~,z .(5.7c)I

EL,= f k~kL sin ky ,L Y/ + k,. cos kt ,,L Ye(kz7+klz) dk (5.7d)I

EL,1 , = - j QECICk sin k,,Ly e j(k7x+k, ) die (5.7e)
-c
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L ,( kk sinkL y + k, cosk,L y) e-Ik ±k'zldkx. (5.7f)

The magnetic fields can now be determined using Equation (2.18) of Section 2.2

H j E ,,( 5 .8 )H L. 77c - E ,

5.2 Coefficients of the Field Expansions

This section presents the solution for the coefficients in the field expansions. Once

these coefficients are known the fields may be calculated in any region. The co-

efficients are determined by enforcing the boundary conditions at the interface of

y = T:

El = Ell (5.9a)

El = Ell (5.9b)

H = H '- J,(x)e- jk,, (5.9c)

Hl = H" + j.(x)e - k '  (5.9d)

where J,(x) and J,(x) are the components of the current J(x) on the microstrip

line. The fields in region I (El, El, H', H) are the sum of the appropriate field

components from Equations (5.2) and (5.3). The electric fields in region II (EllJ,

E ll) are the sum of the appropriate field components from Equations (5.6) and

(5.7). The magnetic fields in region II (H', H') are determined using the same

field components and Equation (5.8).

To solve the boundary condition equations using the spectral-domain approach

[130, 131], Equation (5.9) is Fourier transformed from the space domain (x) into the

spectral domain (k,), evaluated at y = T, and after some simplification, results in

k A kF = QI(kC + + k A - ) + QE(kz B + - k A - ) (5.10a)
WE()
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kilc A + kxF = QAt(kC + - kA-) + QE(krB + - k 2 A) (5.10b)

jk,A + jkiky pw=,, If (-kkkC- - kA+) 4 QE (-kB- + kA+) - J (5.10c)

-jk A+jkyk P = (-kzC- + kA+) + Q-E(kB- + kA+) + , (5.10d)

where

A±  coskynT± coskuLT (5.11a)

kit sin knT ± k sin k,, 1 T (5.11b)

C ±  kyR sin ky.IT ± L sink,,I T. (5.11c) I
kj kL

The qualities J1 and J2 are the Fourier transforms of the components of J(x) and 3
are defined by

Equation (5.10) can be rewritten as

A =QA!C+ _ A- (5.13a)
-P = Q, A- + QEB +  (5.13b)

k - C - A+ k.J 2 - k2J,

YF= - Q- + 2  k2  (5.13c)

- a +  B- kX 2 + kJ

j-4 = -QM---+ QE- (5.13d)

where, for example, Equation (5.13a) was obtained multiplying Equation (5.10a)

by k, and Equation (5.10b) by kz, adding these products, and dividing through by 3
k2 + k2 . After eliminating A and F, Equation (5.13) can be written in matrix form

as

k, I + , . (5.14)
W110 -? W1o 17
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Equation (5.14) can now be solved for QA, and QL. In order to find the ficdds due

to the i and i components of the current, QAj and QE are written as

=A1 QAI,x + QAI,z (5.15a)

QE = QE,x + QEx (5.15b)

where

I c x [-ks J B+ + - kz (, - -- (5.16a)
2A W/[ 77c) (--)C
4 k, - B+ +--+) + k(, A--B)] (5.16b)

QE. 1  k, Wfo(~ c+ + A+ ) + k- (i A- - '-](5.16c)

Q E z [k (j'EOC + + + k' j-A- - C- (5.16d)

(5.16e)

and

I S cos kS,RT COS kyI,LT - G+  (5.17b)

G I kR kL ± sin k u RT sin ky,LT (5.17c)
2 G _ k kL kR kL

U iR sin kyRT cos ky,LT + "yL sin ky,LT cos kV,,RT (5.17d)
kR kL

V kR sin k,RT cos k,LT + - sin kyLT cos ky,RT (5.17e)
kIy,R kv,L

3 with k2 -- wVfj-i = (kR + kL)/2.

* 5.3 Electric Fields at the Interface

This section uses the results of the previous section to calculate the E, and E.

fields at the interface, which are used in the method of moments solution for the
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propagation constant k, and the current J(x) on the microstrip line. These fields are

presented below in terms of the even and odd components of the Fourier transforms I
of these fields generated by + and i polarized traveling wave line sources at the

center of the strip (x = 0, y = T)

r = 0 1 + k2) (1 - S)- -(kU + k2V) (5.18a)
-j, 2 WEL- + k y (l-S)-- * +V U

~ +k~~~ ( -S) L (kv + kU] (5-18b)' e A x y ZWIto ) 77C

- , -' k ( W 0L o (l-S)+-(V- U) (5.18c)

-,0 _ , _ 2k k,~ ,
Ek.o G --- TIC (5.18d)

. j k., - k.,2
- - .r G - (5.18e)

where G-, S, U, and V are defined in Equation (5.17). For example, the E1 field

generated by the surface current J2 (x) is given by

E1z(x 27r f [tj.C(k) + e z0(k1 )] J2 (k )e -3( }z1±kz ') dk1  (5.19)
-- OC

where E, and E, are the even and odd components of the Fourier transform of

the E, field due to a i polarized traveling wave line source at x = 0 and y = T.
-J - z -z - are zeoasn

In a conventional achiral microstrip line E., E,, E.,, and E=, are zero, causing 3
J2 (x) and J1 (x) to be even and odd functions of x, respectively. However, this is not

true for a chiral microstrip line, thereby requiring a set of even and odd expansion I
functions for each current component.

5.4 Method of Moments Solution I
The basis functions and impedance matrix for a Galerkin method of moments so-

lution are presented in this section. The i and i components of the current are

expanded as

J- ()e "  I,. J.,.(X) e - ,kz (5.20a)

n=O
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= I1,. e-jk'z (5.20b)

where 1 ,. and I.,, are the unknown coefficients. The basis functions J_-,, and J,,

I are Chebyshev polynomials weighted by the edge conditions [131]-[135]
4 U,(2x/W)/J Wn = --W n + ) V1 - (2x/W) 2  (5.21a)

- 1-

JZ,.(-) = T(2W) / l (2x/W) 2  (5.21b)

where T,,(z) and U.(x) are Chebyshev polynomials of the first and second kinds,

respectively. A detailed discussion of edge conditions is presented by Van Bladel

[136, pp. 385-387]. From Appendix F, the Fourier transforms of the basis functions

3I are

(k,,) = 2j J  k W 2  (5.22a)

Jz,.(k.) = j"J,(k.W/2) (5.22b)

where J,.(x) is an nth-order Bessel function. The first four basis functions for each

current component are shown in Figure 5.2, where the functions have been normal-

I ized using x' = a/W. The primary advantage of these basis functions is that they

have closed form Fourier transforms while matching the edge conditions. In addition,

I although these basis functions are not orthogonal, they are sufficiently orthogonal

that the I.,,. and I,,, of Equation (5.20) are relatively insensitive to the number of

terms used in the expansion. This is shown in Table 5.1 of Section 5.6.

The coefficients I.,, and I,, are found by using the method of moments to enforce

the boundary condition of zero tangential electric fields at the surface of the perfectly

conducting microstrip line, i.e.,

E=( + E ,z 0 (5.23a)

I E:(z) + E-"(x) = 0 (5.23b)

for ixj < W12 and y = T. Using Galerkin's method of moments, which uses weight-

ing functions equal to the basis functions, Equation (5.23) can be written in block
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LONGITUDINAL TRANSVERSEI

LjI
.. .. .. .. .. .. .. ... .. .. .. .. .. . ... .. .. .. .. .. ... .. .. .. .. .. .1 Vj -X 1 Vj -X I

.. ...i. ...... ..V.. ...... .......... ....

... .. ... .. ..... ... .. ... .. .. ... ... ..

(X12 X12) (4Xl2_l)vfZ7Xi

(4x"3 - 3x)vl-x2(8 4x' ) - / 1

Figure 5.2: First four basis functions for the longitudinal and transverse current
components.
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matrix fn as [ xz o (5.24)

where I-- [/I,o....NI]T and 1z = [,o ... h, Nz]T. The xz block is given by

ZZ(o,o) ... Z,..(O,N,)

Z. "(5.25)

Z(,,o) ... Z. -(N ,,)

where

W/2

fZz(n,,) - , E.''(x) J.,m(x) ek *z dx. (5.26)
-11/2

The term e jk, occurs in Equation (5.26) because the basis and weighting functions

are of the form

J.,,,(x) e-jk==  (5.27)

and the inner product used for the method of moments solution is [118, sec. 12.2.71

W/72

* (w(x),g(x))= f w-(x).g(x)dx. (5.28)
-I V/2

Using Equation (5.19) to calculate Ez' , Equation (5.26) can be written as

ei(k -k.)z 
(

Zxz(m,n) - 2v ]EJ(kx)Jz,,(kx) ,-(k) dk,. (5.29a)
I -00

Impedance elements in the remaining blocks are obtained in a similar fashion and

I are given by

ei(k;-kz)kd
Zxx(mn) =- 2r f ( , ) - (5.29b)

ej(k.*k,
Zz.(m,,,.) =- 2 f S E/(k.)J,,,(k.) ,.,,,(-k ) die. (5.29c)2r 00

ei(k.*-k.)z " -sZz,(m,n) - f( S ) . (k)j ).,,(k.) Jm(-k) dk (5.29d)
2v J
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The values of k, for which Equation (5.24) can be solved are the propagation

constants of the microstrip line. From linear analysis, Equation (5.24) can only be I
solved if the impedance matrix is singular, i.e., the determinant is zero. Once the

propagation constant k, is found, the coefficients I and I,, can be found. One of I
the most accurate techniques for this problem is singular value decomposition [137,

sec. 2.9]. Any matrix, Z, can be factored such that

Z= U VT (5.30)

where 1

U U = ]' (5.31)
1 I

and

W II
E . (5.32)

Wn

If a matrix is singular, at least one w, will be zero. Then, the ith column of V is a

vector in the null space of Z and is a solution for the vector I

In practice, the w, will be not exactly zero, but it will be numerically small. (

5.5 Evaluating the Microstrip Integral Equations

This section is concerned with the efficient numerical evaluation of the electric fields

and the elements in the impedance matrix. For example, Ej' and Z., are given by I
1 

0

E. (.T) = fi J (k1 ) j.(k.) -Jk:Z.a dk, (5.34a)

2" f (k.) (k) dkI (534b)
-c
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where the reference to the particular elements of the impedance matrix has been

dropped for convenience. As in Equation (5.19), the Fourier transforms for the

electric fields and currents can be decomposed into even and odd components:

E,; (k.) =E..'(k.) + E.(k.,) (5.35a)

J,(k,) J,,(k) + J.,o(k ) (5.35b)

j.(-k) = .,J(kx) - .,.(k.) (5.35c)

Equations (5.35a) and (5.35b) can be combined as

g Eze(kx) = E (k) . 2,o(k1) + (3(k6) o(k.)a)

EJJ ,,(k,:) = F,E(k.) J, 0 (k) + E '.(k 7 ) J, (k,). (5.36b)

Then, Equations (5.34a) and (5.34b) can be written as

E.'(z) = 1 f E"Jz,e(kx) cos kx e -
jk z dkx

- . f EJ= ,(k ) sin k a e -
ik " dk (5.37a)

0

71"r

-l' e kZ=z 7r Xz,(k.) Jx,e(k.) dk.

e j(k; -k.). 0

Sr ,,(k.) dk.. (5.37b)I 0
Equations for the remaining electric fields and impedance elements can be written

by changing the references to z and z in Equations (5.37a) and (5.37b).

I Numerical Integration

Efficient numerical integration of Equations (5.37a) and (5.37b) requires careful ex-

I amination of the kernels of the integrals. First, consider the region where k, is

small. Surface wave poles exist in the region between ko and the maximum of kR,

kL, where A of Equation (5.17a) goes to zero. These singularities can be avoided by
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I (x - |~~1

lko-- - - - Re(kI)

.9ko max(kR,k L) 2 max(kR, kL)

Figure 5.3: Integration contour to avoid surface wave poles.

using the integration contour shown in Figure 5.3. Figure 5.4 shows the integrand of

the self-impedance of the Maxwellian (Jd,o) current distribution for k, = 0 to 1000,

a propagation constant of k, = 349.3 (Ag/Ao = 0.6) and several values of , from 0.0

to 0.005 (the limit set in [102] is 1 ,j < / =1 0.0053). The approximate locations 3
of ko, k2, and 2k 2 are shown along the Re(kx) axis for refeieil,,e, where ko = 209.6

and k2 = 419.2 = wx/jii for a frequency of 10 GHz, e, = 4, I, = 1, T = 3mm, and

W = 3mm. The limit of 1I , < e// corresponds to kR,L = k2(vr ± 1). Due to the

wide variation of the integration kernel shown in Figure 5.4, Romberg integration

was chosen for the integration contour shown in Figure 5.3.

Next, consider the region where k, is large. The expressions in Equation (5.18)I

have the following asymptotic behavior:

E-J oc k, (5.38a)

e 1/k (5.38b)

E, o = cx1 (5.38c)

-JZ x -E. cx 1/k, (5.38d)

E oc 1. (5.38e)
z'C I

The remaining terms in the integrals of Equation (5.37) are sine, cosine, and Bessel

functions. Since the asymptotic form of a Bessel function consists of a cosine function

divided by the square root of the argument, all the integrals in Equation (5.37) ran
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Integrand of Z1

Frequency = 10 GHz
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I 4c= 0.000
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I 4C=0.005
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00
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0 250 500 750 1000
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U Figure 5.4: Integrand of the self-impedance of a Maxwellian current distribution
(Z,,(,o,o)) for a normalized guide wavelength of 0.6 (k,=349.3) and a range of chiralityIadmittances. 105
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be written for large k-, as

fj1 cos(w k, + a) cos(Wok 1 + 0) dk, (5.39)

where P = 0.5,1.5, 2.5 for electric field calculations and P = 2,4 for impedance

calculations. For achiral impedance calculations P is always 2, because - J is zero

for achiral microstrip lines. The closed form of Equation (5.39) is presented in

Appendix H in terms of sine, cosine, and Fresnel integrals. Since the expressions

of Equation (5.18) approach their asymptotic forms in Equation (5.38) much more

rapidly then the Bessel function approaches a cosine function divided by the square

root of the argument, the use of these asymptotic forms is limited by the asymptotic

form of the Bessel functions.

In the intermediate region between 2max(kR, kL) and the start of the asymptotic

region, the integrals in Equation (5.37) are similar enough to the asymptotic forms

that the number of integration points needed can be predicted from the frequency

of the two sinusoids in the integral, i.e., IWI + W2 1 and 1w, - w2j. An alternative I
approach for integrating the self-impedance of the Maxwellian current distribution

(ZZZ(O.k)) is presented in Appendix G. I
5.6 Numerical Results I
This section presents numerical results demonstrating the accuracy of the method

of moments solution, and also some effects of chirality on a microstrip transmission

line. To simplify comparisons all results are for a substrate of thickness T = 3 mm,

C' of 4, and u, of 1, with a microstrip line of width W = 3 mm. Since the microstrip

current can only be found to within a constant, all currents are normalized so that I
i,o = 1. When plotting currents or fields, the real part is shown as a solid fine, and

the imaginary part as a dashed line. The initial data will illustrate the accuracy of I
the method of moments solution by showing that it satisfies the boundary condition

of zero tangential electric field on the perfectly conducting strip.
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'The longitudinal current on a thin acihiral inicrostrip ine is essentially the Max-

I wellian distribution 1/ 1- (2x/W)2 . The transverse current is an odd function

satisfying the edge condition V1 - (2x/W)2 , similar to the J.,, expansion function

of Equation (5.21a). Figure 5.5 shows the longitudinal (E,) and transverse (E,)

I electric fields at the interface (y = T) when these two expansion functions are used

in the solution for thin chiral and achiral microstrip lines. Note that this solution

i produces essentially zero tangential electric field on the strip for the achiral case,

but not for the chiral case. This indicates that the method of moments solution

Ifor the achiral case is essentially correct. However, the relatively poor field match

for the chiral case indicates that it is not correct, and thus more expansion func-

tions are needed. The real asymmetric E, field component shown in the upper left

graph is due to the chirality of the substrate. This field component is unaffected in

I the solution by even J, and odd J, expansion functions, thereby requiring odd J,

and/or even J, expansion functions for a reasonably physical solution. The imagi-

I nary symmetric E, and real asymmetric E, field components for both the chiral and

achiral cases are virtually identical, indicating that modest chirality produces only

Ia relatively small perturbation in the currents and fields.

A more accurate approximation for the currents is shown in Figure 5.6 using ten

longitudinal and ten transverse expansion functions. The left-hand graphs show that

the fields nearly satisfy the boundary condition of zero tangential electric field on

the microstrip line. The corresponding currents are shown in the right-hand graphs.

The even transverse current component, which occurs solely because of the. chirality,

is significantly larger than the odd transverse current component. The calculated

propagation constant for the chiral microstrip line using twenty expansion functions

differs only slightly from that of the achiral microstrip line shown in Figure 5.5. The

imaginary part of k,, corresponding to attenuation on the line, is negative and of

the order 10'.
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Chiral & Achiral Microstrip Line
Two Lowest Achiral Expansion Functions

Er= 4 , /b=1, T=3mm, W=3mmI

200 .Fre quency = 500 MHz
200 =

0 .. . .. . ... . . .

N -100 ..... ........ ...... . . . .

-200 . .

00-

-Y 0 ---- c--
....-50. ReaI(E) ..

-100 -. _ _ _ _ _ _ _ _ _

-0.003 0.000 0.003 -0.003 0.000 0.003

X~m X~m

Figure 5.5: E,, and E., fields at y =T for identical chiral and achiral microstrip
lines, solved using the two lowest order expansion functions.
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The variation of the propagation constant and the current coefficients with re- D
spect to the number of basis functions used is shown in Table 5.1 for the geometry

and material parameters in Figure 5.6. Accurate calculation of the propagation con-

stant requires very few expansion functions as seen in Table 5.1. However, accurate

calculation of the imaginary part of k, requires an accurate representation of the

current on the microstrip line, which is dependent on the width of the microstrip

line in wavelengths. For comparison, Figure 5.7 shows the electric fields and currents

for the microstrip line examined in Figures 5.5 and 5.6 at 5 GHz.

The dispersion curve shown in Figure 5.8 shows the normalized guide wavelength 3
(Ag/A,,) for the fundamental mode of a chiral microstrip line, for a range of chiral

parameters. The case , = 0 corresponds to an achiral line. As seen in Figures 5.5

and 5.6, the chirality of the substrate significantly modifies the fields and currents of

the microstrip line even for small chiral parameters. However, as Figure 5.8 shows,

the propagation constant is not significantly affected unless the chiral parameter is

a significant fraction of its maximum value set in [102] of VCI E/(, which in i
this case is 0.0053.

Figure 5.9 shows the relationship between substrate thickness and normalized i
guide wavelength for chiral and achirai microstrip lines at frequencies of 0.5 GHz

and 2 Ghz. The relationship between microstrip line width and normalized guide

wavelength is shown in Figure 5.10 for the same frequencies.

5.7 Summary

This chapter has presented a spectral-domain solution to the problem of propagation

on a microstrip transmission line on a chiral substrate. Circular vector potentials

were used to expand the fields in the chiral substrate. The primary effect of the

chiral substrate is to generate asymmetric longitudinal and symmetric transverse

fields. This effect could significantly alter the properties of microwave and higher

frequency devices constructed on a chiral substrate.
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Chira Mic ostri Lin
Cr=4 Pr=, T= mm, =3I
G=.00 Freuency 5 GI

2000 1
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Figure 5.7: Fields and currents at y = T for a chiral microstrip at 5 GHz solved
using ten J,. modes and ten J1, modes.I
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Figure 5.8: Normalized guide wavelength (Ag/Ao) versus frequency for the funda-
mental mode of chiral and achiral microstrip lines, for a range of chiral parameters.
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0.60
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Figure 5.9: Normalized guide wavelength (A\g/)\() versus substrate thickness for the
fundamental mode of chiral and achiral microstrip lines at two frequencies.I
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Figure 5.10: Normalized guide wavelength (Ag/Ao) versus microstrip line width forI the fundamental mode of chiral1 and achiral microstrip lines at two frequencies.
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Chapter 6 1

Conclusions |I
In this report, the interaction of objects composed of chiral media with electromag- 3
netic field was analyzed using eigenfunction and method of moments techniques.

The historical basis for the constitutive relationships used for chiral media was dis- i
cussed in Chapter 1. These constitutive relationships were shown to have a direct

relationship to the constitutive relationships for optically active media, which can I
be derived using quantum mechanics.

Chapter 2 presented one method for solving the wave equation in chiral media.

Key parts of this method were then used to develop circular vector potentials, which

produce circularly polarized fields useful for field expansions in chiral media. Next,

the volume equivalence theorem was developed for chiral media using the same

procedure as that used for achiral media, and then was used to develop image theory

for chiral media. i
An eigenfunction solution for scattering by a multilayer circular chiral cylinder

with a center cylinder described by an impedance surface was developed in Chapter 3. 3
The essential difference from achiral eigenfunction solutions was the use of circularly

polarized vector wave functions. The formulation was such that the TEz solution 3
differed from the TMz solution by only a plus/minus sign at one step. Previous work

required completely different solutions for TMz and TEz incident plane waves. An 3
examination of the scattered fields showed that the cross-polarized bistatic echo

I
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width of circular cylinders is identical for TMz and TEz incident plane waves. The

most significant result of this chapter was the effect of chirality on the internal fields.

In one case, more J, than J, current was induced on a perfectly conducting cylinder

coated by two layers of chiral media for a TEz incident plane wave, even though

the achiral problem would have induced no J, current on the conducting center

cylinder. An examination of the relationship between chirality and scattered fields

found that even through the achiral bistatic scattering pattern may have no deep

nulls, the co-polarized bistatic pattern for a chiral cylinder can have deep nulls for

certain ranges of . In one case the backscattered field was entirely cross-polarized

for a small range of the chirality admittance.

* A pulse-basis point-matching method of moments solution for scattering by an

inhomogeneous object composed of chiral media in free-space or in the presence of a

I perfectly conducting half-plane was presented in Chapter 4. The numerical results

showed that the cross-polarized backscatter echo width of at least one noncircular

geometry is identical for TMz and TEZ incident plane waves. However, the cross-

polarized bistatic echo-width can differ, which is in contrast to the circular cylinders

of the previous chapter. An examination of the internal fields of one chiral cylinder

showed that the number of cells needed in the method of moments solution increased

by a factor of 5. Part of this increase is due to the short wavelength of the circu-

lar polarized fields in chiral media. The remaining increase remains unexplained

and may be due to the interaction of the two circular polarizations with different

wavelengths.

A spectral-domain Galerkin method of moments solution for a microstrip trans-

mission line on a chiral substrate was developed in Chapter 5. The propagation

constant of the transmission line showed only a minor change due to the chirality

of the media. In contrast, the fields were significantly changed. These fields can

be divided into the symmetric and asymmetric field components. The symmetric

field components were only slightly affected by the chirality of the media. However,
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the asymmetric field components were due in entirely to the chirality of the media.U

These asymmetric field components would significantly affect the coupling between 3
microstrip lines on a chiral substrate.

I

I
I

I
I

I
I
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I Appendix A
I

Scattering by a Chiral Coated
Perfectly Conducting Cylinder

I This appendix presents an eigenfunction solution for scattering by a perfectly con-

ducting circular cylinder coated by a single homogeneous layer of chiral media. The

I development is similar to the more general case of scattering by a multilayer circular

chiral cylinder presented in Chapter 3. The geometry of the coated cylinder is shown

I in Figure A.1, where the constitutive parameters of the chiral coating are (I, E,)

with an outer radius of b meters. The right and left wave numbers, kR and kL, and

I the wave impedance, 77, of the coating are defined by Equations (2.12) and (2.11).

The perfectly conducting cylinder has a radius of a meters. The external medium is

I free space, with parameters (/Lo, ,Eo), wave number k0 = wV/juoio, and characteristic

I impedance 77o = O-o.

External and Internal Field Expansions

This section presents the eigenfunction expansions for the fields external and inter-

nal to the chiral coated cylinder. The external scattered fields are expanded as in

Equation (3.5)

I~~~O Es=(jl[a 4)(AkO) ± fM(4)(k,)]I E S  = Ey j-. [aN.)() + bM n(k) (A.l1a)
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or ®--

H'

I

Figure A.I: Geometry of a chiral coated perfectly conducting cylinder. 3
Sl-- n[anM(M)(kf+ n O

where Nn and Mn are defined in Equation (3.2).

Using the right and left circularly polarized vector wave functions [20] from Equa-

tion (3.6), the internal fields are expanded as

cx' ( +4 [1(1) + + +, EE 2)] (A.2a)n Z j- n n "4'nL,n - R-n L,-J

n = -OG I
H -- [ - + E (2) -1 E (2) (A.2b)

H = -- , , , -- --E', + " n s.nL,nj

rc=-c I

TMz Incident Field

This section presents the solution for a TMz plane wave normally incident from

= 1800. As in Equation (3.3), the incident fields are expanded as

E' = ie-jk0T =- j-"N(')(ko) (A.3a)

_j• nm (

H' = -y-e - 3 k0 = - .= j-M .')(ku). (A.3b)
77o 37n=o

The unknown coefficients are found by enforcing the boundary conditions of con-

tinuous tangential electric and magnetic fields at p = b and zero tangential electric I
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fields at p = a. The scattered field coefficients, a, and b,, are given by

TI B( 1 (L)A TA + B(1)(R)B7'A' + B(2)(L)CTA' + (2)(R T~Af A.a

an + n- n n n( -+B RD- (A.4b)

TA _j7,

The internal field coefficients c,,, 4, lz,,,7 and In are given by

T! 2jic B TAI

I TAI' - ji DTn (A.5a)
n 7rwtio~b AT,"'

I 1 TAI
d TAI -?I(A.5d)

n 7rrwi~ub ATAI

TA Iwhere(A5c

and

ITA TA"' XT'2 V, 1) + k V.(2 )(R) + 1,"V. 2)(L (AA7b

[I_____)A + X,(')(RBV,(L n(R) r (A.6c)

I. DT,"' (R + 7ka n (L). (R (A. 7a)

I ,P(SV ,,()(s)H,+ 1'(k~b n Z)()Hn 2)(~) (A.7e)

InP S kZ(P) (k,5b) Hn,)( kb) - Zn(P)(Isb)Hn(2)'(kub) (A.7f)
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B() _17' Z (P)(ksb)J,:(k,b) - Z(P)'(ks b)Jn(kob) (A.7g)
77(,

Z= ZP)(ka)Z)(ka (P)' "(q) (A.7h)

UI, n Z(kLb):'(k,,b) - Z,(,,)'(kLb)Z(Q)(kRb). (A.7i) I
TEz Incident Field

This section presents the solution for a TEz plane wave normally incident from

1800. As in Equation (3.4), the incident fields are expanded as

E ii je-ik°or==-j- !)k, (A.8a)Ioc

E' = ;J-jk°x= J _ -MN)(k). (A.8b)

The unknown coefficients are found by enforcing the boundary conditions of con-

tinuous tangential electric and magnetic fields at p = b and zero tangential electric

fields at p = a. The scattered field coefficients, an and bn are given by

a n (A.9a) U
_ AM)( T-F + A(1)(R) TE A 2)(L)C E + A, (R)D, A

bA(()(R)D, " T (A.9b)

The internal field coefficients c,, d, h,, and I, are given by

2i TEI
cn = rwLO BATE (A.lOa)

rwbTE

dE_ 2jiic AnE (A.10b)
hrwuLb ATL

h TE 2ji7, D Tn (A.IOc)- 7rwjLb ATE !
1TE 2ji7 C,7 (A.10d)

7rwubATE I
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where

I7 and +l 1,-I + +,(2 ± C7+ TV()(R)D7] TI A.1i)

(2,) ,( ) R) na (L - (.)1,2 R (A. 12a)

BTE =- (.)j1J)L 2 Wn 2) (R) X (~12 , 2 ( (L) (.1b

nI 1 7rkRa a1 ?

D7E214,- ')(R)(A1d

A(P)(S) 77' Z,(P)'(k,5b)J 1(ktb) - (A.12e)J,
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Appendix B |I
Evaluating the Half-Plane
Green's Function Integrals I
The Green's function for a i polarized line source in the presece of a perfectly

conducting half-plane involves the integrals [125, 8.3]

for ( ,. hs app , (U 2 + 032)t-1/2 du,(.1

for I = 1,2. This appendix presents new and efficient techniques for accurately

evaluating these integrals. For a lossless ambient medium oL and 0 are real numbers.

The range of a that needs to be explicitly considered can be restricted to c > 0
using [138]I

S,(a,3) = S,,(/3) - S,(-a,o) 
(B.2)

where i = 1, 2 and the S,,(f) are defined by I
SI(j(O) = SI(-00,O) = ej () + (B.3a)

S2 0(0) = S2 (-o 3 -~j 2e'/ [ 1 2 ) + H 2 I (BIb

Figure B.1 shows the real and imaginary parts of the integrand of Equation (B.1)

for i = 1 and /3 = 1. The singularities caused by /3 can be seen in the lower graph I
at u = ±j. The branch cut caused by the square root can be seen in both graphs

starting at the singularity u = -j. Figure B.2 shows the best regions for each 1
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Figure B.1: The real and imaginary parts of the integrand of the half-plane integral

fort'= 1 and f3 1.
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IV I I

III I

II- 1.6 a

Figure B.2: Regions for each method of evaluating the S, integrals in the half-plane
Green's function for a z polarized line source.

method of evaluating the Si integrals. These methods are presented in the following
sections.

Method I: Numerical Integration (ji > 1.6, all/3) 1
This section presents a numerical integration technique for S and S2 requiring far 3
fewer points then previous approaches [129, 138, 139]. Using the change of variables

u2 
= x and x = a 2 -jt, where the second change of variables corresponds to changing 3

the integration path for x to the contour = a 2 to -joc + a 2 to oo, Equation (B.1)

can be rewritten as I
.e-jn2 J e-t  dt

S,(a,ol) = ----- f (a 2  jt + 0 2)i- 1/2  2 -jt (B.4)

where the portion of the path at infinity does not contribute to the integral. Fig- 3
ure B.3 shows the resulting contour in the complex u plane. These integrals are now

in a form suitable for Gauss-Laguerre Quadrature, which can be written as [140, sec 3
25.4.45

ff(\)e-d = wif(x,) + RN (B.5)

I
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where w, and x, are given in [140, table 25.9] for N = 1,...,10, 12, 15 and R,\" is the

remainder. In our case a very conservative upper limit on RN is given by

Nfor S,
2 0 2+4N " J,

IRNI < 2 ; (B.6)
(N92 (2N+1) for S2

Empirically the N required for a relative error of 8 in either S, or S2 is approximately I
given by

N t -. 1 - log, 8 (.16 - .03log, 16) I
- i[15- +log.{16 + 9+log,,, 8 (35- (B.7)

for 0 </32< 2 and by

N - .4- 1.2 - +log,,, 6 2.5- -+log 1 , .18  (B.8)

for 2 > 2. These equations were developed for N 1,...,10, 12,15 and 0.00001 < I
6< 0.01.

Method II: Exact Integration (j3 0)

This section presents the special case of / 0, where the Si's can be exactly inte-

grated I

Sl~alo) = 1 (t2 (Ei.ca

S2(laI,/J) = -j,, ( 2 ) (B.9b)

where E, (z) is the exponential integral given by

E,(z) = J du. (B.10)

as defined in [140, sec 5.1]. I
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Method III: Small Argument Approximations
1 ( al < 1.6,f 2 < 7 )

This section presents efficient small argument approximations for the integrals S,

and S2 when a and # are small. In this region the integrals are evaluated using

S,(a, R) = 1So (3) - sign(a) A S,(o, laI,3) (B.11)
2

I where i = 1,2, the Sio are defined in Equation (B.3), and the AS are defined by

AS(O, a, 0) = f ( u  ? du. (B.12)

The AS can be evaluated using the Taylor series expansion for e-j'2 and inte-

gration by parts. For AS,, where )3 # 0, this gives

AS,(O, aI,O)= a, In + (b) + -1 2 + ,2 (B.13)

where a, and b2 are computed using reverse recursion and the relations

a. = 1± 3 2n- 1 2 a, (B.14a)
2n 2

I = an-) 2 a b,,n. (B.14b)

The reverse recursion is started at n = N, where aN = bN 1. Then the relative

error, 6, is approximately given by

4 (2N 2  (B. 15a)
NN!

(2N)! )32N. (B.15b)

For AS 2, where /3 $ 0, the same technique produces

AS 2(0, IaI,3) = -jc, ln 0+ () + V1)-+ T (+d+ (B.16)
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where cl and d, are computed using reverse recursion and the relations

C, = I + j2n + 1 /2 C7+1 (B.17a)

d1 = c+I4 2 d2  (B.17b)

d4 = Cn n d+1 for n > 1. (B.17c)
n(n +1) 1

The reverse recursion is started at n = N, where cN = dN = 1. Then the relative

error, 6, is approximately given by

6< 2B
N(N + 1)! (B.

(2N + 1)! )2N. (B.18b)

6 < 4NN!3(N + 1)

Due to the relative size of the terms in Equations (B.13) and (B.16), Equa- U
tions (B.15a) and (B.18a) provide very accurate estimates on 6 for a given a; how-

ever, Equations (B.15b) and (B.18b) give very conservative estimates on 6 for a given I
03. Empirically, the N required for a relative error of 6 in S, is approximately given

by

0.85 - 12.3 614 + 7.70 a for S, (B.19)
2.0 - 12.0 8''1' + 7.41 a for S2

where N" is rounded up to N = 4,8, or 13 (i.e. if N" = 4.1, then N = 8).

Method IV: Small/Large Argument Approxima-
tions
(Ial < 1.61 > 7 )

This section presents efficient small/large argument approximations for the integrals

S, and S2 when a < 3 and f3 is large. Again Equation (B.11) is used as in the previ- U
ous section. Then AS is evaluated using the binomial expansion for (u 2 + 02)

and integration by parts. For AS 1 this gives

AS,(0,a,/3) = - 1 Fe a - f2 e- a)2 (B.20)
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where el and f2 are computed using reverse recursion and the relations

en = 1 + j(2n -1)2 1 (B.21a)

2n - 1 a2

n = e, - 2n 1 f n+ I (B.21b)

and F(a) is the Fresnel integral given by

F(a) = fe-jU du. (B.22)I 0
The reverse recursion is started at n = N, where eN = fA = 1. Then the relative

error, 6, is approximately given by

6 < (2N)!2  1 (B.23a)

42N N!3 62N

4 (2N)! Q2N
- 2

3 4 NN!2 3 2N-2 (B.23b)

For AS 2 the same technique produces

AS 2(O,a,/3) [- [g, F(a) - j h2 e- ''  (B.24)

where g, and h2 are computed using reverse recursion and the relations

g. = 1 +j(2n-1)(2n+1) 14n ± g.+i (B.25a)

I 2n + 1 a2h, = " 2n +12 h+l. (B.25b)

The reverse recursion is started at n = N, where gN = hN = 1. Then the relative

error, 6, is approximately 
given by

* < 42N N!3 #2N (B.26a)

I 6<4 (2N + 1)! a2N - 2

5 4 N N!2 )3 2N-2 (B.26b)

Empirically, the N required for a relative error of 6 in S, is approximately given by

3.2 -20.8 60.225 + 23.5 S- for S, (B.27)

6.1- 24.4 6"° 136 + 20.0 - for S2
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where N- is rounded up to N = 4,8, or 13 (i.e. if N* = 4.1, then N = 8). I

In summary, this appendix presented new and efficient techniques for accurately

evaluating the integrals needed for the half-plane Green's function of a line source.

For a given relative accuracy, these approximations are much faster then the tech-

niques presented in previous work [129, 138, 1391.

I
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Appendix C
I

Chiral Slab and Normal Incident
I Plane Wave
I

This appendix presents the solution for a plane wave normally incident on a chiral

slab in free space, and in a form simpler than available in [54] and [62]. Consider

a right circularly polarized wave normally incident on the chiral slab as shown in

Figure C.1. The incident, reflected, internal and transmitted fields are given by

IE = (. ji) ej k °y (C.la)

EI = R (! - ji) e - j koy (C.lb)

E" = T,t (i! - j-) ekRy (C.lc)

Er' = R,1 , (i - ji) e- kLY (C.ld)

E' = T (i ji) ejk2Y (C.le)

where ku= w=,q./fE,, k2 = w./ii-i, kR,L = kc ± kc, k, = ,pj,, k = a and

C,= E + gu
2 . Simple matching of fields at the boundaries produces

TI. = T 712 + 7 (C.2a)2712

Ri, = T r12 - 1c (C.2b)

T = 772 ejko + R e-jkOt (C2
e j k ( (712 cos kjl + jrl, sin kjl(C2c

R = f il - 77o e2ko0 (C.2d)
17d f + 77o
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Figure 0.1: Geometry for an infinite chiral slab U
72 + j77, tan kl (C.2e)

174177, = 7 1 2 tan k.l

where m = 1, pr/ , r=/2/E2, and 1 is the thickness of the slab. For

the case of a left circularly polarized wave, replace kc by -kc in the above equations.

If medium 2 is a perfect conductor, 71,ff = J177c tan cl. For a linearly polarized I
plane wave the solution is simply the sum of the right and left circularly polarized

solutions. I

1
I
I
I
I
I
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Appendix D

Fields of Circular Vector
Potentials

I This appendix presents the fields produced by the circular vector potentials deve!-

opcd in Section 2.3. For the + right circular vector potential

R = i (a sin kyR y + bcos ky.R y) e- J(k' x+k z) (D.1)

I the field components are

E., =nR (a sin kyR y + b cos ky,R y) e - j (k zx+k z )  (D.2a)

E = -J [(akz - b ,R ) sin kR Y + (bk + ak kyR ) cos ky R

e- j (k x+kz) (D.2b)

I 12 = - [(a?-k k - bky.R) sin k,.R Y + (bk'k2 + ak, ,R) cos kyR Y

- j(k ' x+k' ) . (D.2c)

For the left circular vector potential

L = i (a sin kyL y + b cos ky,L y) e- j (k. +k ) (D.3)

Ithe field components are

Ek + ky,L (a sin kyL y + b cos ky,L y) e - i(kz , +kz, ) (D.4a)
kL

135



-j= ak + bkr,- I ) sin k ,L Y + (b/c, a a k'Y2 ) co /cyIL Y]

e-j(k~x+k~z) (D.4b)I

E,=[(ar/c + bk,,L) snkIy+ (bk-ki aky,) cos kyL Y]

-e(kzr+k z).(D.4c)

For the if right circular vector potentialI

R = (a sin /cy.fl y + b cos ky, y) e-j(k~x+k~z) (D.5)

the field components are

E, [(aiz + b/r.) sin /c,fl y + (b/cz - a /rcyR)cos ky,R Y

e- (kx+kzz) (D.6a)I

Ey =k x + k 2,(a sin /cy,R Y + b cos /cy.R Y) e)(k~x+k~z) (.

E,=-j [(a/cr - b /Y zs in/ kt 1±Y (b/cr + a Ic cosctii Y]

e2(k~r+kzz) (D.6c)I

For the P left circular vector potential

L = P (a sin /cy,L Y + b cos /cyL y) e-j(kr+k, z) (D. 7)

the field components areI

E, = [(ak - b/c, ~) sin kl,,L Y + (b/c5 + a ) cos /cy.L Y

e1(kzr+kzz) (D.8a)

/c2 + /cPLL

Ey= - L 2 (a sin/cyLY + b o yLY jkxk )(.b

E = -[(a/cr+ b+y-Lz)sinkcY/+ (b/cr,-a~-Lc)coscyLY]

-j~k~~k 2 (D.8c)

For the i right circular vector potential

R = i (a sin/cynRy + bcos/cy,,R y)e-j(kr+kz (D.9)I
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the field components are

E, [ (a '-'C + bk,,n) sin kyR Y + (b-k, ak,,R) cos k,,R y
e - j (k ?+kz) (D.10a)

E j [(ak, + bk )sinkyRY+(bk - a kk cosky,R Y

E 2  -R Ic±~

e -j (k ' x +k z z )  (D.10b)

E, = k. (asin ky,R y + bcosky,n y)e-(kr+kzz)" (D.10c)

For the i left circular vector potential

L = i (a sin ky,L y + b cos ky,L y) ej(kr+k z) (D. 11)

the field components are

e- j (k° x+k --z )  (D. 12a)E[(ak, -bk.L k ) sin k Y + ( k, + ak,L ) cos k,L Y]
kL ) sin k y + (okC + kL c

[-j(k-r+k'z) (D.12b)

k + k2

EL ,j,L (a sin ky.L y + b cos kvL y) ej(k xIk ) (D.12c)
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AppendixE I

Spectral Domain Fields in a Half U
Space I

I
This appendix examines the wave numbers of a spectral domain field in a half space u
of y > 0. Assume a spectral domain field given by

- f L(k)e-j(k x+ky+k z)dk (E.1)

where

k 2 k2±+k 2±+k 2 (E9.2)

For +z propagation, with k - ,

e - -jkZ - e- - "  (E.3) 1
which requires that both a, and 0, be greater than zero. The fields must decay as 3
y -4 cl, therefore ay > 0, using ky =-- - ja and

e- jk YY = e-ca'ye - 'I YY. (E.4) U
Take k,, and k, to be real, then from Equation (E.2) I

k2 2 +2- 2 2 (E.5a)

0 -j2y0y - j2a.z. (E.5b)

I
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From Equation (E.5b)

Iy _ a / (E.6)
ay

therefore (E.7)

3 and

kk 2 -k 2 -k for k + k < k (E.8)
ky + -kok for k2 + kz> k.
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Appendix F l

Fourier Transforms for Microstrip
Problems I

I
This appendix presents some of the Fourier transforms used in microstrip problems

and how they are obtained. The Fourier transform

0f j b, . (_j). d2 = ( -j)" for JI < a
fvuO r'- Vdx(F.1)I

f 0 for JbI > a

where T, is a Chebyshev polynomial of the first kind, can be obtained directly from I
[141, sec. 6.671.8-10].

The Chebyshev polynomials of the first and second kinds have the following

properties

T.(cos$) = cosn$ (F.2a)

U._,(ccso) sinnO (F.2b)

d [sinOU,,I(cosO)] = nT,,(cos0). (F.2c)

As a consequence of Equation (F.2c)

(V/-I --T2 U._,(x)) = n TW(F.3)

Starting 
with

J,,(at) 2i (- 2 T(wa) for IwI < a (F.4)
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use Equation (F.2c) to get

J,,(at) ( ' (-j)r-I [,/- w2 U°_,(w/a)] for Ii < a. (f.5)na dwo

The derivative property for Fourier transforms is

(-jt)f(t) (F.6)

Comparing Equation (F.5) and (F.6) the following relationship can be obtained

-J.(at) 4  _ (d)-d [Va-w2 U._-(w/a)] for Iwi < a. (F.7)
t na dw

which can be written as

SJ",(ax) Jb ( -J) -  v a2 -b 2 U" - (b/a) for IbI < a
f e-brdx =a (F.8)3 1 0. for IbI > a

Edge Modes

Edge modes on microstrip lines can be represented by

a -w 1 wa2  
- aW -(F.9a)

va+ w W 2 a
a-w + W (F.9b)vla- v/a- /2 - 2"

From Equation (F.4), the Fourier transforms of these edge mode functions are given

by

1 Ja -- for IwI < a
2 [Ju(at) - jaJ,(at)] - < (F.10a)
2.10 for IwI > a

1 { f for IwI < aI -~~ [Jo)(at) + jaJ, (at)] '- o-W o a F1 b

0 for IwI > a.

Fourier transforms for these and more complicated edge mode type functions can

also be calculated using Equations 3.384.1 of [141].
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AppendixG I
Numerical Integration for the
Self-Impedance of the Dominant U
Microstrip Current I

I
This appendix presents a technique which can be applied to the integration of the

self-impedance of the Maxwellian current distribution on a microstrip line. This is I
the ZZ2 ((,,) term of Section 5.4 and can be written as

Z22 (,,,O) J Cos 2  4d (G.1)

where f((k,) approaches a constant for large k,.

Consider the integral

I f f(x)dx (G.2)

where f(x) cx x - ' for a > I and large x. The integral can be written as

I = hO(X) + 1,(X) + - (X) (G.3)

where

XIo(X) = Jf(x)dx (G.4a)
U
.\ + A

I,(X) = f f(x)dx (G.4b)
N
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oc

SIO(X) f f (x)dx. (G.4c)

A'+ A

Next, define a constant c such that
X +A

1(x) = f x-oa"d (G.5)
X

then 3 -I, (X)
C (a - 1) [XI-a - (X + A),-a" (G.6)

For large x

I,,,(X) ,-- c f x-- ax (G.Ta)

X+A

-.. I,(X) (G.7b)
(1 + A/X)' - 1"

This technique is used by integrating to a point Xu, integrating the additional

distance A, and using Equation (G.7b) to estimate I..(Xo) and repeating for X, =

Xu + A. By comparing I (Xo) and I (X1 ) an estimate of the error can be obtained.

I For the microstrip impedance problem, A would be chosen as the length of one

or more cycles of the sinusoid, in this case A = n x i and the first X would be

chosen to be near a null. Fo. .his special case of a = 2, Ioo(X) is given by

I,,, X) = I] (X) A* (G.8)
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Appendix H I

Generalized Sine and Cosine |
Integrals I

I
This appendix presents generalized sine and cosine integrals which are extensions of

the sine and cosine integrals

Si(z) = - sin tdt (H.la)

t
Cr(z) = - Jo t~ dt (11.1b)

Si(z) = 0sin t dt (H.l c)t

= i(z) - (H.ld)

and the Fresnel integrals I
2 1 Usins

S(z) = sin t dt -, 12 -i ds (H.2a)
o o

2 rZ2

C(z) = cost2dt = ,, -cS- ds (H.2b)
0 uo I

as defined in [140, sec. 5.2, 7.3].

I
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The first extension is for higher powers in the denominator

0I sin t 1 rsin z1
s5i(z, P) = - J 1 dt =P- tp + Ci(z, P -l)] (H.3a)

Ci(z, P) = - Cof d = 1 Co - qi(z, P - 1)] (H.3b)

where .si(z, 1) = si(z) and Ci(z, 1) = Ci(z).

IThe second extension is to double cosine and sine functions

ICCi(z, P,W1 , a,W2,/) = - C1cos(WI t + a) COS(W 2 t+ # ) dt (H.4a)

CSi(z, P,W1 ,aW 2,1) = - J cos(w11t + a) sin(W2 t + ,8) dt. (H.4b)

i Each of these functions can be writtza as the sum of four terms

CCi(Z,P,U;I^aW 2 ,1) =CCi + CCi2 +CCi3 + CCi1  (H.5a)

ICSi(z, P,w U;, a,wL2 , 0) =CSii + CSi2 + CSi4 + CSi1I (H.5b)

I where

ICCt, cos@a - 3)IWI - W2 I P- Ci(IWI - U)2 IZ,P) (H.6a)

I 022 cos(a +f IWI + W2 I P- Ci(IWI +W2I Z, P) (H.6b)

M~3  = sin(a -,0 PI -W2 I 1 'Si(IWI -W2 IZ, P) (H.6c)

M4 sin(a + 3) IWI+ W2 I P- Si (Iwi +W 2 IZ, P) (H.6d)

CS 1 = coa- ) IWI - W2 Ip' Si(IWI - W2IZ, ) (H.6e)

IS1 cos(a + f3) IUI+ U;2  ' Si(IWI + W2 IZ, P) (H.6f)

CSi 3 =- sin(a - 3) IWI - W21"' Ci(IW, -Uw2jZ, P) (H.6g)
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CSi4 = sin@t+,3 IWI ±W 2 1PI Ci(IWI +w 2 1z,P) (11.6h)

with adjustments for special cases:3

WI- w 2 < 0: change sign on CCi3 and OSi,

wI + W2 < 0: change sign on CCi4 and CSi2 3
WI- W20: CCi3 = 0, CSil = 0, and

C~ii = -cos(a - P) z~' 3
C% = -2 P-1 (H.-7a)

CST,, = sin(a -13) z'-"(.b
2 P-i IH7b

WI + U)2 =0: CCi4 =0, CSi2 =0, and3

CCZi2 = - cos(a+1+,) z'- H.a
2 P-i IH8a

CSZ*4 = - sin(t ±13 z'-P H.b
2 P-i (H8b1
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Appendix I
I

Evaluation of the Microstrip
Impedance Elements in the

I Spatial Domain

This appendix presents spatial domain equations and sample numerical results used

to verify elements of the method of moments impedance matrix presented in Chap-

ter 5. Since the spatial-domain Green's function for a microstrip line does not exist

in closed form, a substrate with material parameters (I u, Eo) is necessary to evaluate

the impedance matrix in the spatial domain for simple tests. The resulting problem

can be decomposed into the self-impedance of a strip in free space, and the mutual

impedance of the strip and its image. The geometry of the equivalent problem is

shown in Figure 1.1.

The first test involves numerical integration of the self-impedance of J_ current

modes. The self-impedance of a J_ current mode in free space is given by

Iu - k 2 W/12 IV/2
Z - ' f f H. 2 (ktIX - X'I) J.(.T') d.' W.(z) d, (1.1)' 4weI E- W2 -1112

and the mutual impedance of the current mode and its image is given by
2 2 /2 1V/2I.= _ - 1 / / HO (k, ( - I)2 + 4 2 ) J.(X')d.' W.(T)dx (1.2)
k'( ' 4,W t  '2

-W/2 -11/2

using Equation (J.15b) and the Z,, equivalent of Equation (5.26).

147



I
I
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T I
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Figure I.1: Equivalent geometry for self-impedance of J. microstrip current mode. U
For W = 0.1, T = 0.1, ko = 10.479 (500 MHz), k, = 10k,, and d.J(x') = I

W,(r) = 11W, numerical integration of Equation (1.1) plus Equation (1.2) using

Gaussian Quadrature with 280 and 288 points' results in a value of Z,. = -j17663, I
which differs from the spectral domain value of Z = -j17596 by 0.4 percent. For

J2 (X) = W 2(X) = 1/(7r W 2/4 - x2), the same numerical integration results in a I
value of Z,, = -j18849, which differs from the spectral domain value of Z, =,

-j19012 by 0.9 percent.

The second test involves closed form integration of the self-impedance of Jdl

current modes using the small argument approximations for Hankel functions. The

i-component of the electric field at the surface of the strip shown in Figure 1.1 due

to a J, surface current is given by

E.(J.) = 4w- e- kkz HO (2)(kip) + p H, (kp)] J.(x') dx' (1.3)
-II/2 I

using Equation (J.13a), y = y', and letting T - oc so that the image current does

not contribute to the electric field at the strip. For k, = 0 and J(x') = 11W, then 3
'The logarithmic singularity of the Hankel function is avoided by using a different number of

points for the each of the double integrals.
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I

Equation 
(1.3) reduces 

to

E-(J,) 1 HI(k,,Ix - x'I) dx'. (1.4)

Using the small argument approximation for the Hankel function and integrating,

Equation (1.4) is approximately given by

8 27rwEW [x- W/2 x +W/2 )

For point-matching with k, = 0, the self-impedance of a J., current mode is

approximately given by

Z.r= -Er(J) j2 (1.6)

' 8 rwcW2 (

For a frequency of 500 MHz, W = 0.06, and T -* oo, Equation (1.6) gives a result

of = 493.5 - j6358, compared to Zx,, = 465 - j5449 using spectral domain

integration.

For a weighting function in the shape of a triangle given by

= 1-2(W/2 - x) for 0 < x < W/2
W.,(-) =(1.7){ -(W/2+x) for -W/2<x<0

the self-impedance of a J, current mode is given by

Wp, _ j4
S wwW 2 In 2. (1.8)

For a frequency of 500 MHz, W = 0.06, and T --+ oo, Equation (1.8) gives a result

of Z,,= 493.5 - j8813, compared to Z.,,,, = 490 - j7976 using spectral domain

integration. For T = 0.1, the mutual impedance of the image can be calculated by

numerically double integrating Equation (J.13a) multiplied by the weighting func-

tion, resulting in Z_,a,,, = 101.4 + j528.2, compared to Za,,i = 102 + j529 using

spectral domain integration by subtracting the impedances for T -. oo and T = 0.1.
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For k. . 0 and J3 .(x') = 1/T', Equation (1.3) reduces to I

k24wV [kf H'(klx - x'l)dx'
±-V IJ/-2 ( , , - x

-u/2 ]

Using the small argument approximations for the Hankel functions and integrating

Equation (1.9) with the triangular weighting function given in Equation (1.7), the

self-impedance is approximately given by
z -, 1 k2 w-j2W 11- 1n+l Wk
Z.,'. ~iwv[k w- w[- + In 2 + In2! )I• 4wW 7r 6 "32

+kt (k,- " 1 In2)] (1.10) I
where -y = 1.781. 5

For a frequency of 500 MHz, W = 0.06, T -- oo, and k, = 0.1ko; Equation (1.10)

gives a result of Z,.., = 498.4 - j8817, compared to Z., = 495 - j7969 using

spectral domain integration. For T = 0.1, the mutual impedance of the image can

be calculated by numerically double integrating Equation (J.13a) multiplied by the

weighting function, resulting in Z, ,, = 94.4 + j530.2, compared to Z~,1 = 95 + j530

using spectral domain integration by subtracting the impedances for T -+ oo and

T = 0.1. Changing the parameters to W = 0.03 and k. = 0.5ku; the results

are Z,,, = 616.9 - j35330 using Equation (I.10) and Zx., = 616 - j33952 using I
spectral domain integration. The mutual impedance of the image for T = 0.1 was

Zx,,i = -89.2 + j560.3 numerically and Z,3 ,i = -89 + j560 by spectral domain I
integration. ~I

The integrals of the small argument approximations of the Hankel functions used

in this Appendix are summarized in Appendix L. 3

I
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Appendix J

Two-Dimensional Traveling Wave
Electric Currents

This appendix presents the fields of a two-dimensional traveling wave electric current

given by

J(r') = J(p') e-jkz' (J.1)

in a two-dimensional region, R. The vector potential of an arbitrary current in a

volume V with a wave number k is calculated using

1 t e-jkr

A(r) = 1] J(r') e dV' (J.2)
47r r

where r - Ir - r'I. Since the region is independent o" z, the z integration of Equa-

tion (J.2) can be done using

1 j -  2 +(z-z' '

- J e '~'dz' -j e -kzz HU'2)(kip) (J.3)

from Appendix K, where

r= p/ +(z-z') 2  (J.4a)

p = y- ) + (y -y') (J.4b)

ki = - k.2 . (J.4c)
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The resulting equation for the vector potential of an arbitrary traveling wave electric

current in a: z-independent region is given by

A(p) eJk- H, I (ktp) J(p')dR'. (J.5)

The z-independent component of the current can be written in rectangular co-

ordinates as

J(p') = iJ."(p') + PJ4(p') + iJ.-(P,) (J.6)

where each component produces a vector potential of the same polarization, i.e.,I

icJ 1 (p') +* A,(p) (J. 7a)

-Jy' iAy(p) (J. 7b)

iJ.2 (p') -. Az(p). (J.7c)

The electric and magnetic fields are calculated from the individual vector potentials

using H =V XAand E =-jupA + -V(V - A).

The fields of a i! polarized traveling wave current are3

H -jkAjj'- 6Ay (J.8a)

WE - aX2 (Aa±ax

where the explicit dependent on p has been dropped for clarity. Similarly, the fields

of a y polarized traveling wave current are

H = jk 2Aic + zA (J.9a)

Ey 2 + L y A)O A] (J.9b)I

and the fields of a i polarized traveling wave current areI

HA 2 = A R. (J.10a)

WE~ ~ +r (k2 k)Ai. (J. IOb)
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The partial derivatives in Equations (J.8)-(J.10) reduce to the derivatives of

H '2)(k,p) given below:
H

(
' 2 ) ( k ' p )  T- H( 2

)(kp)

-k (J.lla)

a: (kH) - Y " H I (k,p) (J.11b)

a2 H.(2)(k, P) = '(X - XT)y - Y' 2~ H (2)(kip) - k, HO(2) (kfp)l (J.llc)
Oxay p 2  p

2 H, y,2)(kjp) (X - ,)2 -(y -y,) (I = t H(2)H(ktp)
p 2

k, (  -(k, p) (J.11d)

t;2_ H :'2H(kj(k Y) Y-I)' - (X X(k2p(2I3 -HI( p )

( T H2(k,P). (J.lle)

For example, the i and i components of the electric field produced by the

traveling wave electric current

J(p') = i J7 (p') e- jk' (J.12)

in a region R are given by

E,(J-) - e [2 _ k2 H 2'2)(k'p)

+kJ(X XI) (p_. ) H (2) (kip) J.,(p') dR' (J,13a)

E2(J-) - e fk~z j (jJ 13b) - 21 j(p

R

The i and i components of the electric field produced by the traveling wave electric

current

J(p') = i J2 (p')e - k2' (J.14)
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in a region R are given byI

ExJ)= k jk 1 ek2 f x X' H (2
)(kp) Jx(p') dR' (J. 15a)

E, (j,) = k- k2e-jkzz]fH 2 ) (kip) J.(p') dR'. (J.15b)
4L,)c

RI
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| Appendix KI
* Spherical Wave Spectrum of a

Cylindrical Traveling Wave

This appendix develops a spherical wave spectrum of a cylindrical traveling wave

starting with the cylindrical wave spectrum of a spherical wave given by

= - (K.1)-")
P2 + (z - z)2 2 H((pVk 2 - w2)eJ lz)dw (K.1)

which can be developed using Equations (5-136), (5-137), and (5-138) of [115, p.

244] and is given in abbreviated form in Equation (5-139) and in Equation (6.614.4)

of [141]. Let

f(Z) + (K.2)/P' + (Z- ,)Y
and

F(w) = jH( 2  - w2)e - j ' "'. (K.3)

i Now, using the Fourier transforms

f(z) = f F(w)ej'zdw (K.4a)

F(w) = J f(z)e-Jw"dz (K.4b)

the final relationship is obtained:

I W2 ) e e - dz. (K.5)

I 155



I

Equation (10) of [139] incorporates a similar result with ~ = -jw. I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
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Appendix L

Small Argument Approximations
for Integrals of Hankel Functions

This appendix presents small argument approximations for several integrals of Han-

kel functions multiplied by other functions, using

H 7)(z) 1 - j2 In 2 z  (L.la)
7r 2

H, 2'(z) + (L.1b)

where ' = 1.781.

a fH 2)(k X x ' d - 2 7r7

+(a - x)ln -I + a! -2a] (L.2)

71 2

+( + x)2 In kl2' kx Ix++ a - 2 (L.2)

-a

H(2) (klX - X'l) dx'w(x) dx ;2a - ja (- 1 1 In 2 + In ka) (L.4)

a 8

[ f H12) (kfx - x'j) dx' w(x) dx : ka - j- In 2 (L.5)

JX-XI 1rka
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where

-i(a-x) for O<x <a(L6I

±a'ax) for -a<x <0.
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Appendix M

Limitations of the Reciprocity
Theorem in Two-Dimensions

This appendix examines the limitations of the reciprocity theorem in two-dimensions

and shows a practical example where the reciprocity theorem is not valid [142]. First,

we will derive the reciprocity theorem following the classical approach [115, sec. 3-8].

Consider two time-harmonic sources a and b with electric and magnetic current

densities (J", M') and (jb Mb), respectively, radiating in a region containing a linear

isotropic inhomogeneous medium (,a, e). Source a or b radiating alone in the region

produces the fields (Ea, H0 ) or (Eb, Hb), where the fields are related by

V x H' = jwEE0 + J (M.la)

-V X E' = jwgH' + M' (M.lb)

or

V X Hb = jweEb + jb (M.2a)

-V x E' = jwHb + Mb (M.2b)

respectively.

Equations (M.1) and (M.2) are combined using the vector identity

V.(A x B)= B-V x A- A. V x B (M.3)
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resulting in I

V.- (E' X H a) = Ha .- V X E' - E b . V X H a

= _jwLH'" H b - H a .MI - jwEE b " Ea - E' Ja (M.4)

and

V- (Ea X Hb) = Hb . V x Ea - Ea. V x Hb

= _jwiHb" H a - H b "M, - jweEEE b - E a jb (M.5) I
Subtracting Equation (M.5) from (M.4) yields

V7. (Eb X H a - E a X H b) = H b . M a - H a •M b + E a . jb E b " ja (M.6)

which is the point form of the Lorentz reciprocity theorem. I
Applying the divergence theorem to Equation (M.6) yields

ff(Eb X Ha - Ea X Hb) .dS =N (H b. Ma - Ha. mb +Ea. i b .j) dv (M.) I

where S is a closed surface over the volume V and dS is the outward normal at S.

This is the general form of the Lorentz reciprocity theorem [131, pg. 49].

The sources a and b are confined to volumes V, and Vb, enclosed by surfacesSa I
and Sb, respectively, as shown in Figure M.1, where volume V is the source-free

region, enclosed by the surface E + S, + Sb. Since (J', M') and (jb, Mb) are zero in

Vo, the right-hand side of Equation (M.7) is zero for V = V, resulting in the.Lorentz

reciprocity theorem for a source-free region

(EbX-HaEn xH .bdS=0. (M.8)
E+Sa+Sb

For sources of finite extent in all three-dimensions, the surface E is taken to be

" sph-re f r-T -- r -* oo. Then the radiation condition

#f(EbXHa-EaXH b)dS=0 (M.9)I
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is used to reduce Equation (M.8) to

#f(E' X H a- E a xH') dS= (E X H a -E a X Hb).-dS (M.16)
S. Sb

which is often written as

M fb r-Hb.Ma)dv= fN (E.Jb -H.Mb)dv (M.11) I

using Equation (M.7). I
However, for sources of finite radial extent in two-dimensions, the source-free

volume V is a cylinder with two axial voids and the suface E is the outer surface of

this volume and can be decomposed into three surfaces: 3
E = ,-0.oo + EZ-OC + EZ-.-oC (M.12)

The radiation condition only applies for the surface Ep_,,, so the reciprocity theo-

rems of Equations (M.10) and (M.11) are not valid for general sources of finite radial

extent.

Next, we will consider under which conditions the surfaces - and - do

not contribute to Equation (M.8). This contribution is given by

JJ (E b xHo-EaXH).dS~fJ(EbXHa-EaXHb).dS. (M.13)I

Ti,?- most common fields in two-dimensions can be described as traveling wave

fields where the only z variation of the fields is e-jxz. The two limiting cases are

TEz and TMz fields, where k. - 0, and TEM fields, where k, = k = wVi " Since

the regions of interest are source-free, i.e., the surfaces - and E,--O,, the fields

can be represented as the sum of the fields generated by the magnetic and electric

vector potentials [115, sec. 3-12] given by 3
A = i(x,y)e- j kz (M.14a) 3
F it(z,y)e -kz2. (M.14b)
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The resulting fields are given by

E =-VXF-jwpA+ (A)
jwE

+- [3kzi ! - + i (k2 - k-) i] e - kJz (M.15a)

V(V.F)
H =VxA-jwEF+ jWA

1 8, a4 + i (k2 - k2) j1' . (M.15b)
+~ [W -ki__ik i~ - + 2/ j e

First, individually consider the surface integrals of Equation (M.13) point-wise

(E'b XHa _ Ea x H) .i (M.16)

where k is from dS = idxdy. Using Equation (M.15), the first term can be expanded

in rectangular coordinates as

a4~ k' at b / 8 4 b k' 411bkb

(Ex~).a{ y axO2 + Oz1 WE 8a, IIL EjZ

(a 1ik + e- (M.17)

a y OxL Ox Oy/ -L

=ft {a,@ a 8 4,b a

+k
0a /t & 5a ffb fta

k. /8 pb ~a qb C a

WE 82, 8x + L7IU /&

k k /jpb 8,a aqrb .91kb-~~~~)k ---b - - - O--- )}- e-(k +k ). (M.18)
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The second term may be obtained in a similar fashion. Then Equation (M.16)

reduces to i

(Ebx Ha- E XHb) e- 2 {
k2O a x --a8y ag I9

+a (k 1 kq' -a - -, 8i- -M.19)
+(~k) I~'a x -x) -

Equation (M.19) is zero for TEM fields, where k. = k. Using Equation (M.19),

Equation (M.13) is zero for traveling wave fields where k= -k, and as a spe-

cial case, TEz and TMz fields where k" = kb = 0. Under limited special cases,

Equation (M.19) may be zero for general traveling waves. I

Microstrip Transmission Line I
The method of moments solution of a microstrip transmission line is one case where 3
the limitations of the reciprocity theorem are important. This problem consists of

finding the electric field of a traveling wave current when calculating the method of 3
moments impedance matrix. This is one case where the Galerkin method of moments

impedance matrix is not symmetric. To avoid the complexity of the microstrip

Green's function, consider the mutual impedance between the currents icJ,(x)e- j k z

and id,(x)e- j kzz in free space using Equations (J.13b) and (J.15a) I

Z. - 1/, 1k172 H (2) (klJ - x'l)J.(x')d'- J,(x)dx (M.20a)
-W/2 -W/2

11 7/2 [ k k4 -1 2 - 2 (k X]

:h~rk, ~ [-~ ~~: ' IH12(~ - x'I)J,(x)dx] .x')dx' (M.20b)-1172 -11/2z

where k, = R - k2. In this special case Z., = -Z... Clearly, for a microstrip I
line the relationship would be more complicated, but definitely Z.3 2  Z,, except in

limited special cases.
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